Quảng cáo
Trả lời:
Lời giải:
Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử x ≥ y ≥ z
⇒ xy + yz + zx ≤ 3xy
⇒ xyz + 2 ≤ 3xy
⇒ xy(3 − z) ≥ 2 > 0
⇒ 3 – z > 0
⇒ z < 3
⇒ z ={1;2}
TH1: z = 1
⇒ xy + x + y = xy + 2
⇔ x + y = 2
⇒ x = y = 1
⇒ (x;y;z) = (1;1;1)
TH2: z = 2
⇒xy + 2x + 2y = 2xy + 2
⇒ xy − 2x − 2y + 2 = 0
⇒ xy − 2x − 2y + 4 = 2
⇒x(y−2) − 2(y−2) = 2
⇒(x − 2)(y − 2) = 2 (pt ước số cơ bản)
Suy ra: \(\left\{ \begin{array}{l}x = 4\\y = 3\end{array} \right.\)
⇒ (x ; y; z) = (4; 3 ;1)
Vậy nghiệm của phương trình đã cho là: (x ; y; z) ∈ {(1;1;1) , (4; 3 ;1)}.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
\(\left\{ \begin{array}{l}{x^2} + {y^2} + 2\left( {xy + 3x - y} \right) = 0\\{x^2} + {y^2} + 4x - 2y = 0\left( 2 \right)\end{array} \right.\)
Trừ phương trình thứ nhất cho phương trình thứ hai, ta được:
2(xy + 3x – y) – 4x + 2y = 0
2xy + 2x = 0
2x(y + 1) = 0
Suy ra: x = 0 hoặc y = -1
+ Với x = 0, thay vào (2) ta có: y2 – 2y = 0 ⇔ \(\left[ \begin{array}{l}y = 0\\y = 2\end{array} \right.\)
+ Với y = -1, thay vào (2) ta có: x2 + 4x + 3 = 0 ⇔ \(\left[ \begin{array}{l}x = - 1\\x = - 3\end{array} \right.\)
Lời giải
Lời giải:
ĐKXĐ: \(x \ge \frac{1}{2}\)
\({x^2} - 6x + 2 = 2\left( {2 - x} \right)\sqrt {2x - 1} \)
⇔ \({x^2} + 2x\sqrt {2x - 1} + 2x - 1 = 4\left( {2x - 1} \right) + 4\sqrt {2x - 1} + 1\)
⇔ \({\left( {x + \sqrt {2x - 1} } \right)^2} = {\left( {2\sqrt {2x - 1} + 1} \right)^2}\) (*)
Do \(x \ge \frac{1}{2}\) nên \(\left\{ \begin{array}{l}x + \sqrt {2x - 1} > 0\\2\sqrt {2x - 1} + 1 > 0\end{array} \right.\)
Nên (*) tương đương: \(x + \sqrt {2x - 1} = 2\sqrt {2x - 1} + 1\)
⇔ \(x - 1 = \sqrt {2x - 1} \)
⇔ \(\left\{ \begin{array}{l}x > 1\\{\left( {x - 1} \right)^2} = 2x - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}x > 1\\x = 2 + \sqrt 2 \end{array} \right.\)
Vậy \(x = 2 + \sqrt 2 \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.