Câu hỏi:

10/05/2025 65

Giải hệ phương trình: \(\left\{ \begin{array}{l}xy\left( {3x + y} \right) = 4\\7{x^3} + 11 = 3\left( {x + y} \right)\left( {x + y + 1} \right)\end{array} \right.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

\(\left\{ \begin{array}{l}xy\left( {3x + y} \right) = 4\\7{x^3} + 11 = 3\left( {x + y} \right)\left( {x + y + 1} \right)\end{array} \right.\)

\(\left\{ \begin{array}{l}xy\left( {3x + y} \right) = 4\\7{x^3} + 12 = 3\left( {x + y} \right)\left( {x + y + 1} \right) + 1\end{array} \right.\)

\(\left\{ \begin{array}{l}3xy\left( {3x + y} \right) = 12\\7{x^3} + 12 = 3\left( {x + y} \right)\left( {x + y + 1} \right) + 1\end{array} \right.\)

\(\left\{ \begin{array}{l}3xy\left( {3x + y} \right) = 12\\7{x^3} + 3xy\left( {3x + y} \right) = 3\left( {x + y} \right)\left( {x + y + 1} \right) + 1\end{array} \right.\)

\(\left\{ \begin{array}{l}3xy\left( {3x + y} \right) = 12\\{\left( {2x + y} \right)^3} = {\left( {x + y + 1} \right)^3}\end{array} \right.\)

\(\left\{ \begin{array}{l}3xy\left( {3x + y} \right) = 12\\2x + y = x + y + 1\end{array} \right.\)

\(\left[ \begin{array}{l}\left\{ \begin{array}{l}y = - 4\\x = 1\end{array} \right.\\\left\{ \begin{array}{l}y = 4\\x = 1\end{array} \right.\end{array} \right.\)

Vậy (x;y) = (1;4) , (1;-4)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

\(\left\{ \begin{array}{l}{x^2} + {y^2} + 2\left( {xy + 3x - y} \right) = 0\\{x^2} + {y^2} + 4x - 2y = 0\left( 2 \right)\end{array} \right.\)

 Trừ phương trình thứ nhất cho phương trình thứ hai, ta được:

2(xy + 3x – y) – 4x + 2y = 0

2xy + 2x = 0

2x(y + 1) = 0

Suy ra: x = 0 hoặc y = -1

+ Với x = 0, thay vào (2) ta có: y2 – 2y = 0 \(\left[ \begin{array}{l}y = 0\\y = 2\end{array} \right.\)

+ Với y = -1, thay vào (2) ta có: x2 + 4x + 3 = 0 \(\left[ \begin{array}{l}x = - 1\\x = - 3\end{array} \right.\)

Lời giải

Lời giải:

Thế kỉ XV bắt đầu từ năm 1501 đến năm 1600.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP