Biết \(\sin 2\alpha = - \frac{4}{5},\frac{\pi }{2} < \alpha < \frac{{3\pi }}{2}\).
a) \(\cos \alpha < 0\).
b) \(2\sin \alpha \cos \alpha = - \frac{4}{5}\).
c) \(\cos \alpha = \frac{{ - 2}}{{\sqrt 5 }},\sin \alpha = \frac{1}{{\sqrt 5 }}\).
d) \(\cos \alpha = \frac{{ - 1}}{{\sqrt 5 }},\sin \alpha = - \frac{2}{{\sqrt 5 }}\).
Biết \(\sin 2\alpha = - \frac{4}{5},\frac{\pi }{2} < \alpha < \frac{{3\pi }}{2}\).
a) \(\cos \alpha < 0\).
b) \(2\sin \alpha \cos \alpha = - \frac{4}{5}\).
c) \(\cos \alpha = \frac{{ - 2}}{{\sqrt 5 }},\sin \alpha = \frac{1}{{\sqrt 5 }}\).
d) \(\cos \alpha = \frac{{ - 1}}{{\sqrt 5 }},\sin \alpha = - \frac{2}{{\sqrt 5 }}\).
Quảng cáo
Trả lời:
Vì \(\frac{\pi }{2} < \alpha < \frac{{3\pi }}{2}\) nên \(\cos \alpha < 0\). Ta có hệ: \(\left\{ {\begin{array}{*{20}{l}}{{{\sin }^2}\alpha + {{\cos }^2}\alpha = 1}\\{2\sin \alpha \cos \alpha = - \frac{4}{5}}\end{array}} \right.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{4}{{25 {{\cos }^2}\alpha }} + {{\cos }^2}\alpha = 1}\\{ \sin \alpha = - \frac{2}{{5 \cos \alpha }}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{25{{\cos }^4}\alpha - 25{{\cos }^2}\alpha + 4 = 0}\\{\sin \alpha = - \frac{2}{{5\cos \alpha }}}\end{array}} \right.} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\cos { ^2}\alpha = \frac{4}{5}\\\cos { ^2}\alpha = \frac{1}{5}\end{array} \right.\\\sin \alpha = - \frac{2}{{5 \cos \alpha }}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\cos \alpha = \frac{{ - 2}}{{\sqrt 5 }}\\\cos \alpha = \frac{{ - 1}}{{\sqrt 5 }}\end{array} \right.\\\sin \alpha = - \frac{2}{{5 \cos \alpha }}\end{array} \right. \Rightarrow \left[ {\begin{array}{*{20}{l}}{\cos \alpha = \frac{{ - 2}}{{\sqrt 5 }},\sin \alpha = \frac{1}{{\sqrt 5 }}}\\{\cos \alpha = \frac{{ - 1}}{{\sqrt 5 }},\sin \alpha = \frac{2}{{\sqrt 5 }}}\end{array}} \right.\)
Đáp án: a) Đúng, b) Đúng, c) Đúng, d) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(a,b\) là các góc nhọn nên \(\cos a > 0,\cos b > 0\).
Ta có \(\cos a = \sqrt {1 - {{\sin }^2}a} = \frac{{15}}{{17}} \Rightarrow \tan a = \frac{{\sin a}}{{\cos a}} = \frac{8}{{15}}\);
\(\cos b = \sqrt {\frac{1}{{1 + {{\tan }^2}b}}} = \frac{{12}}{{13}} \Rightarrow \sin b = \cos b\tan b = \frac{5}{{13}}{\rm{. }}\)
Khi đó, \(\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b = \frac{8}{{17}} \cdot \frac{{12}}{{13}} - \frac{{15}}{{17}} \cdot \frac{5}{{13}} = \frac{{21}}{{221}}\).
\(\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b = \frac{{15}}{{17}} \cdot \frac{{12}}{{13}} - \frac{8}{{17}} \cdot \frac{5}{{13}} = \frac{{140}}{{221}}\)
\(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}} = \frac{{\frac{8}{{15}} + \frac{5}{{12}}}}{{1 - \frac{8}{{15}} \cdot \frac{5}{{12}}}} = \frac{{171}}{{140}}.\)
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.
Lời giải
Ta có \(\tan \alpha = \tan \left( {\widehat {BAD} - \widehat {CAD}} \right) = \frac{{\tan \widehat {BAD} - \tan \widehat {CAD}}}{{1 + \tan \widehat {BAD}\tan \widehat {CAD}}} = \frac{{\frac{{15}}{{12}} - \frac{9}{{12}}}}{{1 + \frac{{15}}{{12}} \cdot \frac{9}{{12}}}} = \frac{8}{{31}}.\)
Vì vậy \(\alpha \approx 14,5^\circ \).
Đáp án: \(14,5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
