Câu hỏi:

19/05/2025 3

Cho dãy số (un) xác định bởi công thức \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = }}\frac{{{\rm{n}} - {\rm{1}}}}{{{\rm{2n + 1}}}}\]. Dãy số (un) là:     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A

Ta có:\[{{\rm{u}}_{{\rm{n + 1}}}}{\rm{ = }}\frac{{\left( {{\rm{n + 1}}} \right) - {\rm{1}}}}{{{\rm{2}}\left( {{\rm{n + 1}}} \right){\rm{ + 1}}}}{\rm{ = }}\frac{{{\rm{n + 1}} - {\rm{1}}}}{{{\rm{2n + 2 + 1}}}}{\rm{ = }}\frac{{\rm{n}}}{{{\rm{2n + 3}}}}\]

Xét hiệu: \[{{\rm{u}}_{{\rm{n + 1}}}} - {{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{n}}}{{{\rm{2n + 3}}}} - \frac{{{\rm{n}} - {\rm{1}}}}{{{\rm{2n + 1}}}}{\rm{ = }}\frac{{{\rm{n}}\left( {{\rm{2n + 1}}} \right) - \left( {{\rm{n}} - {\rm{1}}} \right)\left( {{\rm{2n + 3}}} \right)}}{{\left( {{\rm{2n + 3}}} \right)\left( {{\rm{2n + 1}}} \right)}}\]

\[{\rm{ = }}\frac{{\left( {{\rm{2}}{{\rm{n}}^{\rm{2}}}{\rm{ + n}}} \right) - \left( {{\rm{2}}{{\rm{n}}^{\rm{2}}} - {\rm{2n + 3n}} - {\rm{3}}} \right)}}{{\left( {{\rm{2n + 3}}} \right)\left( {{\rm{2n + 1}}} \right)}}\]

\[{\rm{ = }}\frac{{{\rm{2}}{{\rm{n}}^{\rm{2}}}{\rm{ + n}} - {\rm{2}}{{\rm{n}}^{\rm{2}}}{\rm{ + 2n}} - {\rm{3n + 3}}}}{{\left( {{\rm{2n + 3}}} \right)\left( {{\rm{2n + 1}}} \right)}}{\rm{ = }}\frac{{\rm{3}}}{{\left( {{\rm{2n + 3}}} \right)\left( {{\rm{2n + 1}}} \right)}}{\rm{ > 0,}}\forall {\rm{n}} \in {\mathbb{N}^ * }\].

Vậy\[{{\rm{u}}_{{\rm{n + 1}}}} - {{\rm{u}}_{\rm{n}}}{\rm{ > 0}} \Leftrightarrow {{\rm{u}}_{{\rm{n + 1 }}}}{\rm{ > }}{{\rm{u}}_{\rm{n}}}\]. Vậy dãy số (un) là dãy số tăng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho dãy số có các số hạng đầu là: 5; 10; 15; 20; 25; … Số hạng tổng quát của dãy số này là:     

Xem đáp án » 19/05/2025 8

Câu 2:

Cho dãy số (un), biết \({u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + \frac{1}{{5.7}} + ... + \frac{1}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}\).

a) \({u_1} = \frac{1}{3}\).

b) \({u_3} = \frac{3}{7}\).

c) \(\frac{{15}}{{31}}\) là số hạng thứ 15 của dãy số.

d) u2024 + u2025 > 1.

Xem đáp án » 19/05/2025 7

Câu 3:

Cho dãy số (un) có số hạng tổng quát \({u_n} = \frac{n}{{{4^n}}}\). Khi đó

a) \({u_n} = \frac{n}{{{4^n}}} < 0,\forall n \in {\mathbb{N}^*}\).

b) \(\frac{{{u_{n + 1}}}}{{{u_n}}} < 1,\forall n \ge 1\).

c) u2024 < u2023.

d) Dãy số (un) là dãy số tăng.

Xem đáp án » 19/05/2025 6

Câu 4:

Cho dãy số (un), biết \({u_n} = \frac{{n\left( {n - 3} \right)}}{2}\). Tính tổng ba số hạng đầu tiên của dãy số trên.

Xem đáp án » 19/05/2025 6

Câu 5:

Cho dãy số (un) xác định bởi \(\left\{ \begin{array}{l}{u_1} = 7\\{u_{n + 1}} = 2{u_n} + 3\end{array} \right.\). Tính u5.

Xem đáp án » 19/05/2025 6

Câu 6:

Cho dãy số vô hạn 2; 4; 6; ...; 2n;... . Mệnh đề đúng là    

Xem đáp án » 19/05/2025 5

Câu 7:

Bà Hoa gửi vào một ngân hàng số tiền 200 triệu đồng với lãi suất 5% một năm theo hình thức lãi kép, kì hạn 1 tháng. Số tiền (triệu đồng) của bà Hoa sau n tháng được tính theo công thức \({T_n} = 200{\left( {1 + \frac{{0,05}}{{12}}} \right)^n}\). Sau 14 tháng, số tiền bà Hoa nhận được khoảng     

Xem đáp án » 19/05/2025 5
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay