Câu hỏi:

29/05/2025 29

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N\) lần lượt là trung điểm của \(SA\) và \(SD\). Khi đó:

a) \(MN//(SBC)\).

b) \((OMN)//(SBC)\).

c) Gọi \(E\) là trung điểm đoạn \(AB\) và \(F\) là một điểm thuộc đoạn \(ON\). Khi đó \(EF\) cắt với mặt phẳng \((SBC)\).

d) Gọi \(G\) là một điểm trên mặt phẳng \((ABCD)\) cách đều \(AB\) và \(CD\). Khi đó \(GN\)cắt \((SAB)\) .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) b) Vì \(MN\) là đường trung bình của tam giác \(SAD\)

nên \(MN//AD \Rightarrow MN//BC \Rightarrow MN//(SBC)\). (1)

Tương tự, ta có \(O,N\) theo thứ tự là trung điểm của \(BD,SD\) nên \(ON\) là đường trung bình của tam giác \(SBD \Rightarrow ON//SB \Rightarrow ON//(SBC)\). (2)

Từ (1) và \((2)\) suy ra \((OMN)//(SBC)\).

C (ảnh 1)

c) Ta có \(OE\) là đường trung bình của tam giác \(ABD\) nên \(OE//AD \Rightarrow OE//MN\).

Do đó \(E \in (OMN)\). Mặt khác \(F \in ON,ON \subset (OMN) \Rightarrow F \in (OMN)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{EF \subset (OMN)}\\{(OMN)//(SBC)}\end{array} \Rightarrow EF//(SBC)} \right.\).

d)

C (ảnh 2)

\(G\) thuộc mặt phẳng \((ABCD)\) và cách đều \(AB,CD\) nên \(G\) thuộc đường trung bình của hình bình hành \(ABCD\) (ứng với hai cạnh \(AB,CD\)).

Gọi \(I\) là trung điểm \(BC\) thì \(I,O,G\) thẳng hàng.

Ta có \(OI\) là đường trung bình của \(\Delta ABC\) nên \(OI//AB \Rightarrow OI//(SAB)\).(3)

Tương tự, ta có \(ON//SB \Rightarrow ON//(SAB)\).(4)

Từ (3), (4) suy ra \((OIN)//(SAB)\)\(NG \subset (OIN)\) nên \(NG//(SAB)\).

Đáp án: a) Đúng;    b) Đúng;    c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp S.ABCD có đáy hình thang (AB // CD) và AB = 2CD. Gọi I, J lần lượt là trung điểm của SB và AB. Mặt phẳng nào song song với mặt phẳng (SAD)? 

Lời giải

C

Cho hình chóp S.ABCD có đáy hình thang (AB // CD) và AB = 2CD. Gọi I, J lần lượt là trung điểm của SB và AB. Mặt phẳng nào song song với mặt phẳng (SAD)?   (ảnh 1)

Ta có I, J lần lượt là trung điểm của SB, AB Þ IJ là đường trung bình DSAB Þ IJ // SA.

Mà SA Ì (SAD) nên IJ // (SAD) (1).

Ta có \(AJ = \frac{1}{2}AB = CD\) và AJ // CD nên AJCD là hình bình hành Þ JC // AD.

Mà AD Ì (SAD) nên JC // (SAD) (2).

Từ (1) và (2), suy ra (IJC) // (SAD).

Câu 2

Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng? 

Lời giải

D

Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?  	 (ảnh 1)

Ta có ABC'D' là hình bình hành nên BC' // AD' mà AD' Ì (ACD') nên BC' // (ACD').

Câu 5

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O, gọi M, N lần lượt là trung điểm SA, AD. Mặt phẳng (MNO) song song với mặt phẳng nào sau đây? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay