Câu hỏi:

29/05/2025 10

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N\) lần lượt là trung điểm của \(SA\) và \(SD\). Khi đó:

a) \(MN//(SBC)\).

b) \((OMN)//(SBC)\).

c) Gọi \(E\) là trung điểm đoạn \(AB\) và \(F\) là một điểm thuộc đoạn \(ON\). Khi đó \(EF\) cắt với mặt phẳng \((SBC)\).

d) Gọi \(G\) là một điểm trên mặt phẳng \((ABCD)\) cách đều \(AB\) và \(CD\). Khi đó \(GN\)cắt \((SAB)\) .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) b) Vì \(MN\) là đường trung bình của tam giác \(SAD\)

nên \(MN//AD \Rightarrow MN//BC \Rightarrow MN//(SBC)\). (1)

Tương tự, ta có \(O,N\) theo thứ tự là trung điểm của \(BD,SD\) nên \(ON\) là đường trung bình của tam giác \(SBD \Rightarrow ON//SB \Rightarrow ON//(SBC)\). (2)

Từ (1) và \((2)\) suy ra \((OMN)//(SBC)\).

C (ảnh 1)

c) Ta có \(OE\) là đường trung bình của tam giác \(ABD\) nên \(OE//AD \Rightarrow OE//MN\).

Do đó \(E \in (OMN)\). Mặt khác \(F \in ON,ON \subset (OMN) \Rightarrow F \in (OMN)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{EF \subset (OMN)}\\{(OMN)//(SBC)}\end{array} \Rightarrow EF//(SBC)} \right.\).

d)

C (ảnh 2)

\(G\) thuộc mặt phẳng \((ABCD)\) và cách đều \(AB,CD\) nên \(G\) thuộc đường trung bình của hình bình hành \(ABCD\) (ứng với hai cạnh \(AB,CD\)).

Gọi \(I\) là trung điểm \(BC\) thì \(I,O,G\) thẳng hàng.

Ta có \(OI\) là đường trung bình của \(\Delta ABC\) nên \(OI//AB \Rightarrow OI//(SAB)\).(3)

Tương tự, ta có \(ON//SB \Rightarrow ON//(SAB)\).(4)

Từ (3), (4) suy ra \((OIN)//(SAB)\)\(NG \subset (OIN)\) nên \(NG//(SAB)\).

Đáp án: a) Đúng;    b) Đúng;    c) Sai;    d) Sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\]

a) \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]

b) \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]

c) \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]             

d) \(A{A_1}{B_1}B\) là hình chữ nhật.

Xem đáp án » 29/05/2025 24

Câu 2:

Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng? 

Xem đáp án » 29/05/2025 23

Câu 3:

Cho hình chóp S.ABCD có đáy hình thang (AB // CD) và AB = 2CD. Gọi I, J lần lượt là trung điểm của SB và AB. Mặt phẳng nào song song với mặt phẳng (SAD)? 

Xem đáp án » 29/05/2025 21

Câu 4:

Cho hình chóp S.ABC có đáy là tam giác ABC. Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM = 2MA. Gọi N là giao điểm của mặt phẳng (P) và các cạnh SC. Tính tỉ số \(\frac{{SN}}{{SC}}\) (kết quả làm tròn đến chữ số thập phân thứ hai).

Xem đáp án » 29/05/2025 18

Câu 5:

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O, gọi M, N lần lượt là trung điểm SA, AD. Mặt phẳng (MNO) song song với mặt phẳng nào sau đây? 

Xem đáp án » 29/05/2025 16

Câu 6:

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi H, I, K lần lượt là trung điểm của SA, SB, SC. Gọi M là giao điểm của AI và KD, N là giao điểm của DH và CI. Khi đó:

a) HI // (ABCD).

b) (HIK) // (ABCD).

c) Tứ giác ABMS là hình bình hành.

d) (SMN) cắt (HIK).

Xem đáp án » 29/05/2025 15

Câu 7:

Đặc điểm nào sau đây là đúng với hình lăng trụ? 

Xem đáp án » 29/05/2025 14
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay