Câu hỏi:

04/06/2025 77

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Dùng định nghĩa để tính đạo hàm của hàm số \(y = f(x) = {x^2} + 2x\) tại điểm \({x_0} = 1\). Khi đó:

a) \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\).

b) \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\).

c) \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \left( {x + 4} \right)\).

d) \(f'\left( 1 \right) = a \Rightarrow a > 5\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có\[\]\[f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\]

\( = \mathop {\lim }\limits_{x \to 1} \frac{{(x - 1)(x + 3)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 3) = 4\).

Vậy \(f'\left( 1 \right) = 4\).

a) Đúng;   b) Đúng; c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

\(y' = 3{x^2} - 3\)

Ta có \(y\left( 2 \right) = 2\)\(y'\left( 2 \right) = 9\).

Do đó phương trình tiếp tuyến cần tìm là: \(y = 9\left( {x - 2} \right) + 2 \Leftrightarrow y = 9x - 16\).

Lời giải

Ta có: \(f'(x) = - 6{x^2} + 1\) nên hệ số góc của tiếp tuyến của \((C)\) tại điểm có hoành độ bằng 1 là: \(f'\left( 1 \right) = - 6 \cdot {\left( 1 \right)^2} + 1 = - 5\).

Trả lời: −5.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP