Câu hỏi:

04/06/2025 20

Người ta xây dựng một cây cầu vượt giao thông hình parabol nối hai điểm có khoảng cách là \(400\;m\). Độ dốc của mặt cầu không vượt quá \(10^\circ \) (độ dốc tại một điểm được xác định bởi góc giữa phương tiếp xúc với mặt cầu và phương ngang). Tính chiều cao giới hạn từ đỉnh cầu đến mặt đường (làm tròn kết quả đến chữ số thập phân thứ nhất).

Tính chiều cao giới hạn từ đỉnh cầu đến mặt đường (làm tròn kết quả đến chữ số thập phân thứ nhất). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tính chiều cao giới hạn từ đỉnh cầu đến mặt đường (làm tròn kết quả đến chữ số thập phân thứ nhất). (ảnh 2)

Chọn hệ trục toạ độ như hình vẽ, sao cho đỉnh cầu là gốc tọa độ và mặt cắt của cây cầu có hình dạng parabol \(y = - a{x^2}\) (với \(a\) là hằng số dương).

Hệ số góc của tiếp tuyến của parabol bằng \(k = y'\left( {{x_0}} \right) = - 2a{x_0}, - 200 \le {x_0} \le 200\).

Hệ số góc xác định độ dốc của mặt cầu (độ dốc dương) là \(|k| = 2a|x| \le 400a\).

Vì độ dốc của mặt cầu không vượt quá \(10^\circ \) nên ta có:

\(400a \le \tan 10^\circ \Leftrightarrow a \le \frac{{4,408174518}}{{10000}}.\)

Chiều cao giới hạn từ đỉnh cầu đến mặt đường là đoạn \(OI\), cũng chính là độ lớn của tung độ điểm \(B\) khi a đạt giá trị lớn nhất.

Do đó, \(OI = \left| { - a \cdot {{200}^2}} \right| = 17,6(\;m)\).

Vậy chiều cao giới hạn từ đỉnh cầu đến mặt đường là \(17,6\;m\).

Trả lời: 17,6.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có\[\]\[f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\]

\( = \mathop {\lim }\limits_{x \to 1} \frac{{(x - 1)(x + 3)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 3) = 4\).

Vậy \(f'\left( 1 \right) = 4\).

a) Đúng;   b) Đúng; c) Sai;   d) Sai.

Câu 2

Một chất điểm chuyển động có phương trình \[s = 2{t^2} + 3t\](\[t\]tính bằng giây, \[s\]tính bằng mét). Vận tốc của chất điểm tại thời điểm \[{t_0} = 2\](giây) bằng 

Lời giải

D

Phương trình vận tốc của chất điểm được xác định bởi \(v = s' = 4t + 3\).

Suy ra vận tốc của chất điểm tại thời điểm \({t_0} = 2\) (giây) bằng \(v\left( 2 \right) = 4.2 + 3 = 11\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Hệ số góc của tiếp tuyến với đồ thị hàm số y = f(x) = x2 tại điểm có hoành độ x0 = −2 là     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3x\) tại điểm có hoành độ bằng 2.     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay