Câu hỏi:
04/06/2025 20Người ta xây dựng một cây cầu vượt giao thông hình parabol nối hai điểm có khoảng cách là \(400\;m\). Độ dốc của mặt cầu không vượt quá \(10^\circ \) (độ dốc tại một điểm được xác định bởi góc giữa phương tiếp xúc với mặt cầu và phương ngang). Tính chiều cao giới hạn từ đỉnh cầu đến mặt đường (làm tròn kết quả đến chữ số thập phân thứ nhất).
Quảng cáo
Trả lời:
Chọn hệ trục toạ độ như hình vẽ, sao cho đỉnh cầu là gốc tọa độ và mặt cắt của cây cầu có hình dạng parabol \(y = - a{x^2}\) (với \(a\) là hằng số dương).
Hệ số góc của tiếp tuyến của parabol bằng \(k = y'\left( {{x_0}} \right) = - 2a{x_0}, - 200 \le {x_0} \le 200\).
Hệ số góc xác định độ dốc của mặt cầu (độ dốc dương) là \(|k| = 2a|x| \le 400a\).
Vì độ dốc của mặt cầu không vượt quá \(10^\circ \) nên ta có:
\(400a \le \tan 10^\circ \Leftrightarrow a \le \frac{{4,408174518}}{{10000}}.\)
Chiều cao giới hạn từ đỉnh cầu đến mặt đường là đoạn \(OI\), cũng chính là độ lớn của tung độ điểm \(B\) khi a đạt giá trị lớn nhất.
Do đó, \(OI = \left| { - a \cdot {{200}^2}} \right| = 17,6(\;m)\).
Vậy chiều cao giới hạn từ đỉnh cầu đến mặt đường là \(17,6\;m\).
Trả lời: 17,6.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có\[\]\[f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\]
\( = \mathop {\lim }\limits_{x \to 1} \frac{{(x - 1)(x + 3)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 3) = 4\).
Vậy \(f'\left( 1 \right) = 4\).
a) Đúng; b) Đúng; c) Sai; d) Sai.
Lời giải
D
Phương trình vận tốc của chất điểm được xác định bởi \(v = s' = 4t + 3\).
Suy ra vận tốc của chất điểm tại thời điểm \({t_0} = 2\) (giây) bằng \(v\left( 2 \right) = 4.2 + 3 = 11\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\) bằng \(6\).
b) Phương trình tiếp tuyến của \((C)\) tại \(M\) đi qua điểm \(A\left( {0;4} \right)\).
c) Phương trình tiếp tuyến của \((C)\) tại \(M\) cắt đường thẳng \(d:y = 3x\) tại điểm có hoành độ bằng 4.
d) Phương trình tiếp tuyến của \((C)\) tại \(M\) vuông góc với đường thẳng \(\Delta :y = - \frac{1}{6}x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận