Câu hỏi:

05/06/2025 25

Phần II. Trắc nghiệm đúng, sai

Cho hai mệnh đề: \(P\): “\({2^3} \cdot {5^{2025}} \ge {7^{1000}}\)”, \(Q\): “Tổng số đo bốn góc trong một tứ giác bằng \(360^\circ \)”.

a) Mệnh đề phủ định của mệnh đề \(P\) là \(\overline P \): “\({2^3} \cdot {5^{2025}} < {7^{1000}}\)”.

b) Phát biểu mệnh đề \(P \Rightarrow Q\): “Nếu tổng số đo bốn góc trong một tứ giác bằng \(360^\circ \) thì \({2^3} \cdot {5^{2025}} \ge {7^{1000}}\)”.

c) Mệnh đề \(P \Rightarrow Q\) đúng.

d) Phát biểu mệnh đề \(P \Rightarrow Q\) bằng cách sử dụng điều kiện đủ là: “Tổng số đo bốn góc trong một tứ giác bằng \(360^\circ \) là điều kiện đủ để \({2^3} \cdot {5^{2025}} \ge {7^{1000}}\)”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đúng. Mệnh đề phủ định của mệnh đề \(P\) là \(\overline P \): “\({2^3} \cdot {5^{2025}} < {7^{1000}}\)”.

b) Sai. Mệnh đề \(P \Rightarrow Q\): “Nếu \({2^3} \cdot {5^{2025}} \ge {7^{1000}}\) thì tổng số đo bốn góc trong một tứ giác bằng \(360^\circ \)”.

c) Đúng. Vì mệnh đề \(Q\) đúng nên mệnh đề \(P \Rightarrow Q\) đúng.

d) Sai. Phát biểu mệnh đề \(P \Rightarrow Q\) bằng cách sử dụng điều kiện đủ là: “\({2^3} \cdot {5^{2025}} \ge {7^{1000}}\) là điều kiện đủ để tổng số đo bốn góc trong một tứ giác bằng \(360^\circ \)”.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Mệnh đề đảo của mệnh đề “\(P \Rightarrow Q\)” là mệnh đề “\(Q \Rightarrow P\)” và được phát biểu là: “Nếu \(ABCD\) là hình chữ nhật có hai đường chéo vuông góc với nhau thì tứ giác \(ABCD\) là hình vuông”.

b) Sai. Hai mệnh đề \(P\) và \(Q\) tương đương với nhau.

c) Sai. Mệnh đề \(P \Leftrightarrow Q\) là mệnh đề đúng.

d) Đúng. Vì \(P\) và \(Q\) tương đương nên \(P\) là điều kiện cần và đủ để có \(Q\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Câu nào trong các câu sau không phải là mệnh đề?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay