Câu hỏi:

10/06/2025 46 Lưu

Trong các hình dưới đây, hình nào là tam giác đều? 
Trong các hình dưới đây, hình nào là tam giác đều? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Hình 3 là hình tam giác đều. Các tam giác còn lại không có ba cạnh bằng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 a) \({2^9}:{2^2} + {5^4}:{5^3} \cdot {2^4} - 3 \cdot {2^5}\)

\( = {2^7} + {5^2} \cdot {2^4} - 3 \cdot {2^5}\)

\( = {2^5} \cdot \left( {{2^2} - 3} \right) + {5^2} \cdot {2^4}\)

\( = 32 \cdot 1 + 400 = 432.\)

b) \[26 \cdot 7 - 17 \cdot 9 + 13 \cdot 26 - 17 \cdot 11\]

\[ = \left( {26 \cdot 7 + 13 \cdot 26} \right) - \left( {17 \cdot 9 + 17 \cdot 11} \right)\]

 \[ = 26 \cdot \left( {7 + 13} \right) - 17 \cdot \left( {9 + 11} \right)\]

 \[ = 26 \cdot 20 - 17 \cdot 20\]

 \[ = 20 \cdot \left( {26 - 17} \right)\]

 \[ = 20 \cdot 9 = 180.\]

Lời giải

Hướng dẫn giải

Xét biểu thức \(A = 2 + {21^{23}} + {25^{125}}.\)

Ta có \({21^{23}}\) có chữ số tận cùng là 1 (vì \[{\left( {\overline {...1} } \right)^n} = \overline {...1} ).\]

         \({25^{125}}\) có chữ số tận cùng là 5 (vì \[{\left( {\overline {...5} } \right)^n} = \overline {...5} ).\]

Khi đó, \(A = 2 + {21^{23}} + {25^{125}}\) có chữ số tận cùng là: \(2 + 1 + 5 = 8\) (có dạng \(\overline {...8} )\) nên \(A\,\, \vdots \,\,2.\)

\(A = 2 + {21^{23}} + {25^{125}} > 1\) và có nhiều hơn 2 ước nên \(A\) là hợp số.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP