Câu hỏi:
18/06/2025 8Hãng taxi Xanh SM đưa ra giá cước dựa trên số quãng đường di chuyển cho bởi hàm T(x) đồng khi đi quãng đường x (km) cho loại xe 4 chỗ như sau:
\(T\left( x \right) = \left\{ \begin{array}{l}1500\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;khi\;0 < x \le 1\\a + \left( {x - 1} \right).14000\;\;\;\;\;khi\;1 < x \le 20\\b + \left( {x - 20} \right).12000\;\;khi\;x > 20\end{array} \right.\). Biết rằng tiền cước được cho bởi hàm liên tục khi đó \(\frac{b}{a}\) bằng bao nhiêu (kết quả làm tròn đến hàng phần mười)?
Quảng cáo
Trả lời:
Với x Î (0; 1) thì T(x) = 15000 liên tục trên (0; 1).
Với x Î (1; 20) thì T(x) = a + (x – 1).14000 liên tục trên (1; 20).
Với x Î (20; +∞) thì T(x) = b + (x – 20).12000 liên tục trên (20; +∞).
Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to {1^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} T\left( x \right) = T\left( 1 \right) \Rightarrow a = 15000\).
Để hàm liên tục tại x = 20 thì \(\mathop {\lim }\limits_{x \to {{20}^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ + }} T\left( x \right) = T\left( {20} \right) \Rightarrow b = 15000 + 14000.19 = 281000\).
Vậy \(\frac{b}{a} = \frac{{281}}{{15}} \approx 18,7\).
Trả lời: 18,7.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x - 1} - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)}}{{\left( {\sqrt {2x - 1} + 1} \right)\left( {x - 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{2}{{\sqrt {2x - 1} + 1}} = 1\].
Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\) Û m – 2024 = 1 Û m = 2025.
Trả lời: 2025.
Câu 2
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(f\left( x \right) = \frac{{2{x^2} - 5x + 2}}{{{x^2} - 4}}\).
a) Hàm số f(x) liên tục trên khoảng (3; +∞).
b) Hàm số f(x) liên tục tại x = −2.
c) Hàm số f(x) gián đoạn tại x = 2.
d) Nếu \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \frac{a}{b}\) với a, b Î ℤ; \(\frac{a}{b}\) tối giản thì a2 + b2 = 25.
Lời giải
a) Tập xác định ℝ\{±2}.
Do đó hàm số liên tục trên các khoảng (−∞; −2); (−2; 2) và (2; +∞).
Do đó hàm số f(x) liên tục trên khoảng (3; +∞).
b) Hàm số f(x) gián đoạn tại x = −2.
c) Hàm số f(x) gián đoạn tại x = 2.
d) \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{2x - 1}}{{x + 2}} = \frac{3}{4}\].
Suy ra a = 3; b = 4. Do đó a2 + b2 = 25.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Câu 3
Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,x \ne 1\\x + 1 & {\rm{khi}}\,x = 1\end{array} \right.\) và \(g(x) = 4{x^2} - x + 1\). Khi đó:
a) Ta có \(f(1) = 2\).
b) Hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
c) Hàm số \(g\left( x \right)\)liên tục tại điểm \({x_0} = 1\).
d) Hàm số \(y = f\left( x \right) - g\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)