Câu hỏi:

18/06/2025 87 Lưu

Hãng taxi Xanh SM đưa ra giá cước dựa trên số quãng đường di chuyển cho bởi hàm T(x) đồng khi đi quãng đường x (km) cho loại xe 4 chỗ như sau:

\(T\left( x \right) = \left\{ \begin{array}{l}1500\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;khi\;0 < x \le 1\\a + \left( {x - 1} \right).14000\;\;\;\;\;khi\;1 < x \le 20\\b + \left( {x - 20} \right).12000\;\;khi\;x > 20\end{array} \right.\). Biết rằng tiền cước được cho bởi hàm liên tục khi đó \(\frac{b}{a}\) bằng bao nhiêu (kết quả làm tròn đến hàng phần mười)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Với x Î (0; 1) thì T(x) = 15000 liên tục trên (0; 1).

Với x Î (1; 20) thì T(x) = a + (x – 1).14000 liên tục trên (1; 20).

Với x Î (20; +∞) thì T(x) = b + (x – 20).12000 liên tục trên (20; +∞).

Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to {1^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} T\left( x \right) = T\left( 1 \right) \Rightarrow a = 15000\).

Để hàm liên tục tại x = 20 thì \(\mathop {\lim }\limits_{x \to {{20}^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ + }} T\left( x \right) = T\left( {20} \right) \Rightarrow b = 15000 + 14000.19 = 281000\).

Vậy \(\frac{b}{a} = \frac{{281}}{{15}} \approx 18,7\).

Trả lời: 18,7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x - 1}  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)}}{{\left( {\sqrt {2x - 1}  + 1} \right)\left( {x - 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{2}{{\sqrt {2x - 1}  + 1}} = 1\].

Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\) Û m – 2024 = 1 Û m = 2025.

Trả lời: 2025.

Câu 2

A. \(y = \frac{{3x - 4}}{{x - 2}}\).                     
B. y = sinx.                                   
C. y = x4 – 2x2 + 1.       
D. y = tanx.

Lời giải

A

Hàm số \(y = \frac{{3x - 4}}{{x - 2}}\) có tập xác định D = ℝ\{2}. Do đó hàm số gián đoạn tại x = 2.

Câu 3

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 9}}{{{x^3} + 27}}\;\;khi\;x \ne - 3\\a - \frac{{11}}{9}\;\;\;\;khi\;x = - 3\end{array} \right.\). Khi đó:

a) Hàm số f(x) xác định trên ℝ.

b) \(f\left( { - 3} \right) = a - \frac{{11}}{9}\).

c) \(\mathop {\lim }\limits_{x \to - 3} f\left( x \right) = \mathop {\lim }\limits_{x \to - 3} \frac{{{x^2} - 9}}{{{x^3} + 27}}\).

d) Có 23 giá trị nguyên của a Î (0; 25) để hàm số gián đoạn tại x = −3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m = - \frac{1}{2}\).                                    
B. \(m = 2\).                                     
C. \(m = 1\).                 
D. \(m = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP