Câu hỏi:

18/06/2025 59

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi N, M, P lần lượt là trung điểm của BC, AD, SA. Giao tuyến của hai mặt phẳng (SAB) và (MNP).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi N, M, P lần lượt là trung điểm của BC, AD, SA. Giao tuyến của hai mặt phẳng (SAB) và (MNP). (ảnh 1)

Ta có \(\left\{ \begin{array}{l}P \in SA \subset \left( {SAB} \right)\\P \in \left( {MNP} \right)\end{array} \right.\) Þ PÎ (SAB) Ç (MNP).

Mà MN // AB nên giao tuyến của (SAB) và (MNP) là đường thẳng qua P và song song với AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình chóp S.ABCD có AD không song song với BC. Gọi M, N, P, Q, R, T lần lượt là trung điểm của AC, BD, BC, CD, SA, SD. Cặp đường thẳng nào sau đây song song với nhau. 	 (ảnh 1)

Ta có M, Q lần lượt là trung điểm của AC, CD

Þ MQ là đường trung bình của tam giác CAD.

Þ MQ // AD (1).

Ta có R, T lần lượt là trung điểm của SA, SD.

Þ RT là đường trung bình của tam giác SAD.

Þ RT // AD (2).

Từ (1) và (2), suy ra MQ // RT.

Câu 2

Lời giải

C

Giao tuyến của (SAB) và (IJG) là (ảnh 1)

Xét hình thang ABCD, ta có:

I là trung điểm của AD và J là trung điểm của BC.

Suy ra IJ là đường trung bình của hình thang ABCD. Suy ra IJ // AB // CD.

Ta có G Î (SAB) Ç (IJG).

Lại có AB Ì (SAB), IJ Ì (IJG), AB // IJ. Do đó (SAB) Ç (IJG) = Gy // AB // IJ.

Câu 4

Cho hình chóp S.ABCD có đáy là hình bình hành. Điểm M thuộc cạnh SA, điểm E và F lần lượt là trung điểm của AB và BC.

a) EF // AC.

b) Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AC.

c) Giao tuyến của hai mặt phẳng (MBC) và (SAD) là đường thẳng qua M và song song với BC.

d) Giao tuyến của hai mặt phẳng (MEF) và (SAC) là đường thẳng qua M và song song với AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP