Câu hỏi:

18/06/2025 7

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi N, M, P lần lượt là trung điểm của BC, AD, SA. Giao tuyến của hai mặt phẳng (SAB) và (MNP).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi N, M, P lần lượt là trung điểm của BC, AD, SA. Giao tuyến của hai mặt phẳng (SAB) và (MNP). (ảnh 1)

Ta có \(\left\{ \begin{array}{l}P \in SA \subset \left( {SAB} \right)\\P \in \left( {MNP} \right)\end{array} \right.\) Þ PÎ (SAB) Ç (MNP).

Mà MN // AB nên giao tuyến của (SAB) và (MNP) là đường thẳng qua P và song song với AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

C (ảnh 1)

Ta có M Î (ABC) Ç (MNP) mà AB // NP nên (ABC) Ç (MNP) = Mx // AB // NP.

Trong (ABC), Mx cắt AC tại Q.

Vì MQ // AB nên \(\frac{{QC}}{{QA}} = \frac{{MC}}{{MB}} = 2\).

Trả lời: 2.

Lời giải

C (ảnh 1)

Có \(\left\{ \begin{array}{l}M = \left( {MBC} \right) \cap \left( {SAD} \right)\\AD \subset \left( {SAD} \right),BC \subset \left( {MBC} \right)\\AD//BC\end{array} \right.\) nên giao tuyến của hai mặt phẳng này là đường thẳng qua M và song song với AD.

Đường thẳng này cắt SD tại N. Suy ra N = SD Ç (MBC).

Vì M là trung điểm SA, MN // AD nên N là trung điểm của SD.

Do đó MN là đường trung bình của tam giác SAD.

Suy ra \(MN = \frac{1}{2}AD = \frac{3}{2}BC\). Do đó \(\frac{{MN}}{{BC}} = 1,5\).

Trả lời: 1,5.

Câu 3

Trong không gian cho 3 đường thẳng a, b, c biết a // b, a và c chéo nhau. Khi đó hai đường thẳng b và c     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình chóp S.ABCD có đáy là hình bình hành. Điểm M thuộc cạnh SA, điểm E và F lần lượt là trung điểm của AB và BC.

a) EF // AC.

b) Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AC.

c) Giao tuyến của hai mặt phẳng (MBC) và (SAD) là đường thẳng qua M và song song với BC.

d) Giao tuyến của hai mặt phẳng (MEF) và (SAC) là đường thẳng qua M và song song với AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN

Trong các mệnh đề sau, mệnh đề nào sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay