Câu hỏi:

19/08/2025 54 Lưu

Cho tam giác \[ABC\] không vuông tại \[A\]. Dựng bên ngoài tam giác đó hai tam giác \[ABD,{\rm{ }}ACE\] vuông cân tại đỉnh \[A\] rồi dựng hình bình hành \[AEID\]. Biết \[\widehat {DAI} = \widehat {ABC}\]. Gọi \[K\] là trung điểm của \[BD.\]

a) \[\widehat {DAI} + \widehat {BAH} = 45^\circ \].        b) \[AI \bot BC\].

c) \(\widehat {EBA} = \widehat {CDA}\).     d) \(\widehat {KAI} = \frac{1}{2}\widehat {KBC}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:               a) Sai.        b) Đúng.     c) Đúng.     d) Sai.

Cho tam giác \[ABC\] không vuông tại \[A\]. Dựng bên ngoài tam giác đó hai tam giác \[ABD,{\rm{ }}ACE\] vuông cân tại đỉnh \[A\] rồi dựng hình bình hành \[AEID\]. Biết \[\widehat {DAI} = \widehat {ABC}\]. Gọi \[K\] là trung điểm của \[BD.\]  a) \[\widehat {DAI} + \widehat {BAH} = 45^\circ \].        b) \[AI \bot BC\].  c) \(\widehat {EBA} = \widehat {CDA}\).     d) \(\widehat {KAI} = \frac{1}{2}\widehat {KBC}\). (ảnh 1)

Giả sử \[AI\] cắt \[BC\]\[H\].

Ta có: \[\widehat {DAI} + \widehat {DAB} + \widehat {BAH} = 180^\circ \], mà \[\widehat {DAB} = 90^\circ \] (do \[\Delta DAB\] vuông cân tại \[A\]).

Suy ra \[\widehat {DAI} + \widehat {BAH} = 90^\circ \]. Do đó ý a) sai.

\[\widehat {DAI} = \widehat {ABC}\] (gt) nên \[\widehat {ABH} + \widehat {BAH} = 90^\circ \].

Trong \[\Delta ABH\] có: \[\widehat {ABH} + \widehat {BAH} + \widehat {AHB} = 180^\circ \].

Suy ra \[\widehat {AHB} = 180^\circ \left( {\widehat {ABH} + \widehat {BAH}} \right) = 180^\circ - 90^\circ = 90^\circ \] hay \[AI \bot BC\]. Do đó ý b) đúng.

Ta có \[\widehat {BAE} = \widehat {BAC} + \widehat {CAE} = \widehat {BAC} + 90^\circ \]\[\widehat {DAC} = \widehat {BAC} + \widehat {BAD} = \widehat {BAC} + 90^\circ \].

Do đó \[\widehat {BAE} = \widehat {DAC}\].

Xét \[\Delta BAE\]\[\Delta DAC\] có:

\[AB = AD;\,\,\widehat {BAE} = \widehat {DAC};\,\,AC = AE\];

Do đó \[\Delta BAE = \Delta DAC\] (c.g.c).

Suy ra \(\widehat {EBA} = \widehat {CDA}\) (hai góc tương ứng). Do đó ý c) đúng.

Tam giác \[ABD\] vuông cân tại \[A\] nên \[AK\] vừa là đường trung tuyến, vừa là đường cao, đường phân giác. Do đó \(\widehat {DAK} = \frac{1}{2}\widehat {BAD} = 45^\circ \).

Khi đó \(\widehat {ABK} = \widehat {BAK} = 45^\circ \) nên \[\Delta ABK\] vuông cân tại \[K\], do đó \[KA = KB\].

Ta có \[\widehat {KAI} = \widehat {DAK} + \widehat {DAI} = 45^\circ + \widehat {DAI} = 45^\circ + \widehat {ABC}\].

Mặt khác \[\widehat {KBC} = \widehat {ABK} + \widehat {ABC} = 45^\circ + \widehat {ABC}\] (do \[\Delta ABD\] vuông cân tại \[A\] nên \(\widehat {ABK} = 45^\circ )\).

Do đó \(\widehat {KAI} = \widehat {KBC}\). Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Do \[MNBA\]\[MNCB\] là hình bình hành

Suy ra \[AB{\rm{ // }}MN,{\rm{ }}BC{\rm{ // }}MN\] nên theo tiên đề Euclid, hai đường thẳng \[AB\]\[BC\] trùng nhau.

Do đó ba điểm \[A,{\rm{ }}B,{\rm{ }}C\] thẳng hàng.

Do \[MNBA\]\[MNCB\] là hình bình hành nên \[AB = MN,{\rm{ }}BC = MN\]. Suy ra \(AB = BC\).

\[A,{\rm{ }}B,{\rm{ }}C\] thẳng hàng nên \[B\] là trung điểm của \[AC\].

Cho hai hình bình hành \[MNBA\] và \[MNCB\].  a) Chứng minh \[B\] là trung điểm của \[AC\]. b) Hỏi tam giác \[MAB\] thoả mãn điều kiện gì để \[MNCA\] là một hình thang cân?  c) Lấy điểm \[D\] để tứ giác \[MNDC\] là hình bình hành. Hỏi tam giác \[MAB\] thoả mãn điều kiện gì để \[MNDA\] là một hình thang cân? (ảnh 1)

b) Từ câu a, ta suy ra \(MN{\rm{//}}\,AC\) nên \[MNCA\] là hình thang.

Do \[MNCB\] là hình bình hành nên \[NC{\rm{ // }}MB\], từ đó \[\widehat {NCB} = \widehat {MBA}\] (hai góc đồng vị). Điều kiện để hình thang \[MNCA\] là hình thang cân là \[\widehat {MAB} = \widehat {NCB}\] tức là \[\widehat {MAB} = \widehat {MBA}.\]

Vậy điều kiện để \[MNCA\] là hình thang cân là tam giác \[MAB\] cân tại \[M\].

c) Chứng minh tương tự câu a, ta có \(MN\,{\rm{//}}\,AD\) và bốn điểm \(A,\,B,\,C,\,D\) thẳng hàng. Do đó \[MNDA\] là hình thang.

Do \[MNDC\] là hình bình hành nên \[ND{\rm{ // }}MC\], từ đó \[\widehat {NDC} = \widehat {MCA}\] (hai góc đồng vị).

Điều kiện để hình thang \[MNDA\] là hình thang cân là \[\widehat {NDC} = \widehat {MAC}\].

Cho hai hình bình hành \[MNBA\] và \[MNCB\].  a) Chứng minh \[B\] là trung điểm của \[AC\]. b) Hỏi tam giác \[MAB\] thoả mãn điều kiện gì để \[MNCA\] là một hình thang cân?  c) Lấy điểm \[D\] để tứ giác \[MNDC\] là hình bình hành. Hỏi tam giác \[MAB\] thoả mãn điều kiện gì để \[MNDA\] là một hình thang cân? (ảnh 2)

Khi đó điều kiện để \[MNDA\] là hình thang cân là \[\widehat {MCA} = \widehat {MAC}\] tức là tam giác \[MAC\] cân tại \[M\].

Do \[MB\] là đường trung tuyến của tam giác \[MAC\] nên điều kiện để tam giác \[MAC\] cân tại \[M\]\[MB\] vuông góc với \[AC\].

Vậy điều kiện để hình thang \[MNDA\] là hình thang cân đó là tam giác \[MAB\] vuông tại \[B\].

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Trong một tứ giác, hai cạnh kề nhau là hai cạnh có chung một đỉnh.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP