Câu hỏi:

19/08/2025 60 Lưu

Cho tam giác \[ABC\] không vuông tại \[A\]. Dựng bên ngoài tam giác đó hai tam giác \[ABD,{\rm{ }}ACE\] vuông cân tại đỉnh \[A\] rồi dựng hình bình hành \[AEID\]. Biết \[\widehat {DAI} = \widehat {ABC}\]. Gọi \[K\] là trung điểm của \[BD.\]

a) \[\widehat {DAI} + \widehat {BAH} = 45^\circ \].        b) \[AI \bot BC\].

c) \(\widehat {EBA} = \widehat {CDA}\).     d) \(\widehat {KAI} = \frac{1}{2}\widehat {KBC}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:               a) Sai.        b) Đúng.     c) Đúng.     d) Sai.

Cho tam giác \[ABC\] không vuông tại \[A\]. Dựng bên ngoài tam giác đó hai tam giác \[ABD,{\rm{ }}ACE\] vuông cân tại đỉnh \[A\] rồi dựng hình bình hành \[AEID\]. Biết \[\widehat {DAI} = \widehat {ABC}\]. Gọi \[K\] là trung điểm của \[BD.\]  a) \[\widehat {DAI} + \widehat {BAH} = 45^\circ \].        b) \[AI \bot BC\].  c) \(\widehat {EBA} = \widehat {CDA}\).     d) \(\widehat {KAI} = \frac{1}{2}\widehat {KBC}\). (ảnh 1)

Giả sử \[AI\] cắt \[BC\]\[H\].

Ta có: \[\widehat {DAI} + \widehat {DAB} + \widehat {BAH} = 180^\circ \], mà \[\widehat {DAB} = 90^\circ \] (do \[\Delta DAB\] vuông cân tại \[A\]).

Suy ra \[\widehat {DAI} + \widehat {BAH} = 90^\circ \]. Do đó ý a) sai.

\[\widehat {DAI} = \widehat {ABC}\] (gt) nên \[\widehat {ABH} + \widehat {BAH} = 90^\circ \].

Trong \[\Delta ABH\] có: \[\widehat {ABH} + \widehat {BAH} + \widehat {AHB} = 180^\circ \].

Suy ra \[\widehat {AHB} = 180^\circ \left( {\widehat {ABH} + \widehat {BAH}} \right) = 180^\circ - 90^\circ = 90^\circ \] hay \[AI \bot BC\]. Do đó ý b) đúng.

Ta có \[\widehat {BAE} = \widehat {BAC} + \widehat {CAE} = \widehat {BAC} + 90^\circ \]\[\widehat {DAC} = \widehat {BAC} + \widehat {BAD} = \widehat {BAC} + 90^\circ \].

Do đó \[\widehat {BAE} = \widehat {DAC}\].

Xét \[\Delta BAE\]\[\Delta DAC\] có:

\[AB = AD;\,\,\widehat {BAE} = \widehat {DAC};\,\,AC = AE\];

Do đó \[\Delta BAE = \Delta DAC\] (c.g.c).

Suy ra \(\widehat {EBA} = \widehat {CDA}\) (hai góc tương ứng). Do đó ý c) đúng.

Tam giác \[ABD\] vuông cân tại \[A\] nên \[AK\] vừa là đường trung tuyến, vừa là đường cao, đường phân giác. Do đó \(\widehat {DAK} = \frac{1}{2}\widehat {BAD} = 45^\circ \).

Khi đó \(\widehat {ABK} = \widehat {BAK} = 45^\circ \) nên \[\Delta ABK\] vuông cân tại \[K\], do đó \[KA = KB\].

Ta có \[\widehat {KAI} = \widehat {DAK} + \widehat {DAI} = 45^\circ + \widehat {DAI} = 45^\circ + \widehat {ABC}\].

Mặt khác \[\widehat {KBC} = \widehat {ABK} + \widehat {ABC} = 45^\circ + \widehat {ABC}\] (do \[\Delta ABD\] vuông cân tại \[A\] nên \(\widehat {ABK} = 45^\circ )\).

Do đó \(\widehat {KAI} = \widehat {KBC}\). Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[{x^3} + 9{x^2} + 27x + 19 = 0\]

\[{x^3} + 9{x^2} + 27x + 27 - 8 = 0\]

\[{\left( {x + 3} \right)^3} = 8\]

Suy ra \[x + 3 = 2\]

\(x = - 1.\)

Vậy \(x = - 1.\)

b) \[25{\left( {x + 3} \right)^2} + \left( {1--5x} \right)\left( {1 + 5x} \right) = 8\]

\(25\left( {{x^2} + 6x + 9} \right) + \left[ {{1^2} - {{\left( {5x} \right)}^2}} \right] = 8\)

\[25{x^2} + 150x + 225 + 1 - 25{x^2} = 8\]

\[150x = - 218\]

\(x = - \frac{{109}}{{75}}.\)

Vậy \(x = - \frac{{109}}{{75}}.\)

c) \[3{\left( {x + 2} \right)^2} + {\left( {2x - 1} \right)^2} - 7\left( {x + 3} \right)\left( {x - 3} \right) = 36\]

\[3\left( {{x^2} + 4x + 4} \right) + \left( {4{x^2} - 4x + 1} \right) - 7\left( {{x^2} - 9} \right) = 36\]

\[3{x^2} + 12x + 12 + 4{x^2} - 4x + 1 - 7{x^2} + 63 = 36\]

\[\left( {3{x^2} + 4{x^2} - 7{x^2}} \right) + \left( {12x - 4x} \right) + \left( {12 + 1 + 63} \right) = 36\]

\[8x = - 40\]

\[x = - 5.\]

Vậy \[x = - 5.\]

Câu 2

A. có chung một đỉnh.                                                

B. không có đỉnh chung nào.

C. thuộc một đường thẳng.                                          
D. có hai đỉnh chung.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Trong một tứ giác, hai cạnh kề nhau là hai cạnh có chung một đỉnh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - 64\).                           

B. 64.                            
C. \( - 4\).                    
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP