Câu hỏi:

18/06/2025 4

Cho tam giác ABC có A(-1; 2), B (0; 3), C(5; -2). Tìm tọa độ chân đường cao hạ từ đỉnh A của tam giác ABC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chứng minh rằng : tam giác AHK cân. (ảnh 1)

Gọi H là chân đường cao hạ từ điểm A xuống

Đặt H(x; y)

\(\overrightarrow {AH} = \left( {x + 1;\,\,y - 2} \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\overrightarrow {BC} = \left( { - 5;5} \right)\)

Ta có: \[\overrightarrow {AH} .\overrightarrow {BC} = 0\]

\(\begin{array}{l} \Rightarrow \left( {x + 1} \right).5 + \left( {y - 2} \right).\left( { - 5} \right) = 0\\ \Leftrightarrow 5x + 5 - 5y + 10 = 0\\ \Leftrightarrow 5x - 5y = - 15\,\,\,\,\,\,\,(1)\end{array}\)

H Î BC

\(\overrightarrow {BH} ,\overrightarrow {HC} \) cùng phương

\(\overrightarrow {BH} = \left( {x;\,\,y - 3} \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\overrightarrow {HC} = \left( {5 - x;\,\, - 2 - y} \right)\)

Để hai vectơ cùng phương thì \(\frac{x}{{5 - x}} = \frac{{y - 3}}{{ - 2 - y}} \Leftrightarrow 5x + 5y = 15\,\,\,\,(2)\)

Từ (1) và (2) \( \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 3\end{array} \right.\)

Vậy H(0; 3)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Có: \[{\rm{\vec a}}{\rm{.\vec b}} = \frac{1}{2}\left| {{\rm{\vec a}}} \right|{\rm{.}}\left| {{\rm{\vec b}}} \right|\]

Suy ra: \[\frac{{{\rm{\vec a}}{\rm{.\vec b}}}}{{\left| {{\rm{\vec a}}} \right|{\rm{.}}\left| {{\rm{\vec b}}} \right|}} = \frac{1}{2}\]

Suy ra: cos(\[{\rm{\vec a}}\];\[{\rm{\vec b}}\]) = \[\frac{1}{2}\]

Vậy góc giữa 2 vectơ \[{\rm{\vec a}}\]\[{\rm{\vec b}}\] là 60°.

Lời giải

Lời giải:

a) Điều kiện để A là một phân số: \(2{\rm{n}} + 3 \ne 0 \Rightarrow {\rm{n}} \ne \frac{{ - 3}}{2}\)

b) A = \(\frac{{6.(2{\rm{n}} + 3) - 17}}{{2{\rm{n}} + 3}}\)\(\)= \(6 - \frac{{17}}{{2{\rm{n}} + 3}}\)\(\)

Để A nguyên thì 2n + 3 \( \in \)Ư(17) = {\( \pm \)1; \( \pm \)17}

TH 1: 2n + 3 = 1 \( \Rightarrow \) n = -1 (TM)

TH 2: 2n + 3 = -1 \( \Rightarrow \) n = -2 (TM)

TH 3: 2n + 3 = 17 \( \Rightarrow \) n = 7 (TM)

TH 4: 2n + 3 = -17 \( \Rightarrow \) n = -10 (TM)

Vậy n = { -10; -2; -1; 7 }.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay