Quảng cáo
Trả lời:
Lời giải.
Ta có: \(\frac{{2n + 3}}{{3n + 4}}\,\,\left( {n \in \mathbb{N}} \right)\)
Gọi ƯCLN(2n + 3, 3n + 4) là a \(\left( {a \in {\mathbb{N}^*}} \right)\)
Suy ra \(2n + 3 \vdots a;\,\,\,\,3n + 4 \vdots a\)
Do đó \(3\left( {2n + 3} \right) \vdots a;\,\,\,\,2\left( {3n + 4} \right) \vdots a\)
Suy ra \(\left( {6n + 9 - 6n - 8} \right) \vdots a\)
Do đó \(1 \vdots a\) nên \(a \in \left\{ {1; - 1} \right\}\)
Vậy \(\frac{{2n + 3}}{{3n + 4}}\) là phân số tối giản.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì I là trung điểm của AD Þ IA = ID = 3
Xét DIAB vuông tại A
\(\begin{array}{l}\tan \widehat {AIB} = \frac{8}{3} \Rightarrow \widehat {AIB} = 69,44^\circ \Rightarrow \widehat {DIB} = 110,56\\IB = \sqrt {I{A^2} + A{B^2}} = \sqrt {73} \end{array}\)
Ta có: \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {ID} \)
\(\begin{array}{l} = \overrightarrow {IA} .\overrightarrow {ID} + \overrightarrow {IB} .\overrightarrow {ID} \\ = IA.ID.\cos \left( {IA,ID} \right) + IB.ID.\cos (IB,ID)\\ = - 3.3 + \sqrt {73} .3.\cos 110,56^\circ = - 18\end{array}\)
Lời giải
Lời giải:
Số tập con có một phần tử của X là: {4}, {5}
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
