Cho x + y + z = 1.
Chứng minh rằng giá trị biểu thức \[P = \frac{{{{\left( {x + y} \right)}^2}}}{{xy + z}}.\frac{{{{\left( {y + z} \right)}^2}}}{{yz + x}}.\frac{{{{\left( {z + x} \right)}^2}}}{{z{\rm{x}} + y}}\] không phụ thuộc vào giá trị của biến số
Cho x + y + z = 1.
Chứng minh rằng giá trị biểu thức \[P = \frac{{{{\left( {x + y} \right)}^2}}}{{xy + z}}.\frac{{{{\left( {y + z} \right)}^2}}}{{yz + x}}.\frac{{{{\left( {z + x} \right)}^2}}}{{z{\rm{x}} + y}}\] không phụ thuộc vào giá trị của biến số
Quảng cáo
Trả lời:

\[\begin{array}{l}P = \frac{{{{\left( {x + y} \right)}^2}}}{{xy + z}}.\frac{{{{\left( {y + z} \right)}^2}}}{{yz + x}}.\frac{{{{\left( {z + x} \right)}^2}}}{{z{\rm{x}} + y}}\\P = \frac{{{{\left( {x + y} \right)}^2}}}{{xy + 1 - x - y}}.\frac{{{{\left( {y + z} \right)}^2}}}{{yz + 1 - y - z}}.\frac{{{{\left( {z + x} \right)}^2}}}{{z{\rm{x}} + 1 - z - x}}\\P = \frac{{{{\left( {x + y} \right)}^2}}}{{\left( {x - 1} \right)\left( {y - 1} \right)}}.\frac{{{{\left( {y + z} \right)}^2}}}{{\left( {y - 1} \right)z - 1}}.\frac{{{{\left( {z + x} \right)}^2}}}{{\left( {z - 1} \right)\left( {x - 1} \right)}}\\P = \frac{{{{\left( {1 - z} \right)}^2}}}{{\left( {x - 1} \right)\left( {y - 1} \right)}}.\frac{{{{\left( {1 - x} \right)}^2}}}{{\left( {y - 1} \right)z - 1}}.\frac{{{{\left( {1 - y} \right)}^2}}}{{\left( {z - 1} \right)\left( {x - 1} \right)}}\\P = 1\end{array}\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phân giác AD (giả thiết) nên \(\widehat {BAD} = \widehat {MAD} = \frac{1}{2}.\widehat A = 35^\circ \)
Mà MD // AB suy ra \(\widehat {BAD} = \widehat {ADM}\) (so le trong)
Do đó \(\widehat {ADM} = 35^\circ \)
Vậy \(\widehat {BAD} = 35^\circ ;\,\,\,\widehat {ADM} = 35^\circ \)
Lời giải
Kẻ đường thẳng xy đi qua L và song song với MN
Suy ra Lx // MN mà MN // KJ . Suy ra Lx // KJ
Lx // MN suy ra \(\widehat {MLx} = \widehat {NML} = 46^\circ \) (so le trong)
Lx // KJ suy ra \(\widehat {xLK} + \overrightarrow {JKL} = 180^\circ \) (trong cùng phía)
Suy ra \(\widehat {xLK} = 180^\circ - \widehat {JKL} = 180^\circ - 127^\circ = 53^\circ \)
\(\widehat {MLK} = \widehat {MLx} + \widehat {xLK} = 46^\circ + 53^\circ = 99^\circ \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.