Cho \(B - \left( {5{x^2} - 2xyz} \right) = 2{x^2} + 2xyz + 1\). Hạng tử tự do của đa thức \(B\) là bao nhiêu?
Quảng cáo
Trả lời:
Đáp số: 1.
Ta có \(B - \left( {5{x^2} - 2xyz} \right) = 2{x^2} + 2xyz + 1\)
Suy ra \[B = \left( {2{x^2} + 2xyz + 1} \right) + \left( {5{x^2} - 2xyz} \right)\]
\( = 2{x^2} + 2xyz + 1 + 5{x^2} - 2xyz\)
\( = \left( {2{x^2} + 5{x^2}} \right) + \left( {2xyz - 2xyz} \right) + 1 = 7{x^2} + 1\).
Do đó, hạng tử tự do của đa thức \(B\) là 1.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ