Câu hỏi:

19/06/2025 55 Lưu

Một hình chóp tứ giác đều có cạnh đáy là \(a\) và độ dài trung đoạn là \(b\) thì có diện tích xung quanh là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Diện tích xung quanh của hình chóp tứ giác đều đã cho là \({S_{xq}} = \frac{1}{2} \cdot \left( {4a} \right) \cdot b = 2ab\) (đvdt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. Áp dụng định lí Pythagore vào tam giác \[ABC\] vuông tại \[A\], ta có:

\(B{C^2} = A{C^2} + A{B^2} = {\left( {15,5} \right)^2} + {7^2} = 289,25\).

Suy ra  \[BC = \sqrt {289,25} \approx 17\,\,{\rm{(cm)}}\].

\(1\,\,{\rm{inch}} \approx 2,54\,\,{\rm{cm}}\) nên chiếc điện thoại theo hình vẽ là: \(\frac{{17}}{{2,54}} \approx 7\,\,({\rm{inch)}}\).

Vậy chiếc điện thoại theo hình vẽ khoảng 7 inch.

2. a) Diện tích đáy hình vuông của lều là: .

Thể tích không khí bên trong lều là:

S=19,085=14,08  m2.

Vậy thể tích không khí bên trong của chiếc lều là \[8,4\;\;{{\rm{m}}^3}.\]

b) Diện tích xung quanh của lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot 4 \cdot 3 \cdot 3,18 = 19,08\;\;\left( {{{\rm{m}}^2}} \right)\)

Diện tích cần sơn phủ cho lều là:

\(S = 19,08 - 5 = 14,08\;\;\left( {{{\rm{m}}^2}} \right)\).

Số tiền cần phải trả để hoàn thành việc sơn phủ cho lều là:

\(14,08 \cdot 35\,\,000 = 492\,\,800\) (đồng).

Vậy số tiền cần phải trả để hoàn thành việc sơn phủ cho lều là \(492\,\,800\) đồng.

Câu 2

Cho hai đa thức \(A = {x^2} - 4xy - 4\)\(B = 2{x^2} - 3xy + {y^2} - 4.\)

Đa thức \(M\) và \(P\) thỏa mãn \(B = A + M\,;\, & P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right).\)

a) Hạng tử tự do của đa thức \(A\) là \( - 4\).

b) Với \(x = 1\,;\,\,y = 0\) thì giá trị của biểu thức \(B\) bằng \( - 2.\)

c) \(M = {x^2} + 7xy + {y^2}.\)

d) Giá trị của biểu thức \(P\) không phụ thuộc vào biến \(y\).

Lời giải

Đáp án:               a) Đúng.    b) Sai.        c) Sai.        d) Đúng.

Đa thức \(A\) có hạng tử tự do là \( - 4\). Do đó ý a) đúng.

Thay \(x = 1\,;\,\,y = 0\) vào biểu thức \(B\), ta có:

\(B = 2 \cdot {1^2} - 3 \cdot 1 \cdot 0 + {0^2} - 4 = 2 - 4 = - 2.\)

Vậy với \(x = 1\,;\,\,y = 0\) thì \(B = - 2\). Do đó ý b) sai.

Ta có: \(B = A + M\)

Suy ra \(M = B - A\)

\( = 2{x^2} - 3xy + {y^2} - 4 - \left( {{x^2} - 4xy - 4} \right)\)

\( = 2{x^2} - 3xy + {y^2} - 4 - {x^2} + 4xy + 4\)

\( = {x^2} + xy + {y^2}.\)

Như vậy \(M = {x^2} + xy + {y^2}.\) Do đó ý c) sai.

Ta có \[P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right)\]

\( = \left( {x - 3} \right)\left( {{x^2} + xy + {y^2}} \right) - \left( {{x^2}y - 3xy + x{y^2} - 3{y^2}} \right)\)

\[ = x\left( {{x^2} + xy + {y^2}} \right) - 3\left( {{x^2} + xy + {y^2}} \right) - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} + {x^2}y + x{y^2} - 3{x^2} - 3xy - 3{y^2} - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} - 3{x^2}\].

Như vậy, giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến \(y.\) Do đó ý d) đúng.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP