Xác định phần hệ số của tích của hai đơn thức \(\frac{1}{2}x{y^3}\) và \(x\left( { - 8y} \right)x{z^2}\).
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp số: −4.
Ta có: \(\frac{1}{2}x{y^3} \cdot x\left( { - 8y} \right)x{z^2} = \left[ {\frac{1}{2} \cdot \left( { - 8} \right)} \right]\left( {x \cdot x \cdot x} \right)\left( {{y^3} \cdot y} \right){z^2} = - 4{x^3}{y^4}{z^2}\).
Đa thức \( - 4{x^3}{y^4}{z^2}\) có phần hệ số là \( - 4.\)
Vậy phần hệ số của tích của hai đơn thức \(\frac{1}{2}x{y^3}\) và \(x\left( { - 8y} \right)x{z^2}\) là \( - 4.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Diện tích sàn của tự kim tháp là: (m2).
Thể tích của kim tự tháp là: (m3).
b) Diện tích một viên gạch hình vuông là: \({S_{gach}} = {60^2} = 3600\;\;{\rm{c}}{{\rm{m}}^2} = 0,36\;\;{{\rm{m}}^2}\)
Diện tích sàn cần lát của kim tự tháp là: \(1\,\,156 - 156 = 1\,\,000\) (m2).
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên).
Câu 2
A. Có các cạnh bên bằng nhau;
B. Có đáy là hình vuông;
C. Có các mặt bên là các tam giác cân;
Lời giải
Đáp án đúng là: B
Hình chóp tam giác đều có đáy là hình tam giác đều. Do đó khẳng định B là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Hai đỉnh kề với đỉnh \(A\) là \(B\) và \(D\);
B. Hai đỉnh đối nhau là \(A\) và \(C;\) \(B\) và \(D\);
C. Tứ giác \(ABCD\) có 2 đường chéo;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(SH\);
B. \(SA\);
C. \(HA\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


