Câu hỏi:

19/08/2025 48 Lưu

Cho hình chóp tứ giác đều có thể tích bằng \({\rm{50}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\) chiều cao là \({\rm{6}}\;{\rm{cm}}{\rm{.}}\) Độ dài cạnh đáy của hình chóp đó (đơn vị: \({\rm{cm}}\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp số: 5.

Ta có \[V = \frac{1}{3}S \cdot h\] nên \[S = \frac{{3V}}{h} = \frac{{3 \cdot 50}}{9} = 25{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\].

Vì đáy của hình chóp tứ giác đều cạnh a là hình vuông nên độ dài cạnh đáy là \[a = \sqrt {25} = 5{\rm{ }}\left( {{\rm{cm}}} \right)\].

Vậy độ dài cạnh đáy của hình chóp đó là \({\rm{5}}\;{\rm{cm}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. Áp dụng định lí Pythagore vào tam giác \[ABC\] vuông tại \[A\], ta có:

\(B{C^2} = A{C^2} + A{B^2} = {\left( {15,5} \right)^2} + {7^2} = 289,25\).

Suy ra  \[BC = \sqrt {289,25} \approx 17\,\,{\rm{(cm)}}\].

\(1\,\,{\rm{inch}} \approx 2,54\,\,{\rm{cm}}\) nên chiếc điện thoại theo hình vẽ là: \(\frac{{17}}{{2,54}} \approx 7\,\,({\rm{inch)}}\).

Vậy chiếc điện thoại theo hình vẽ khoảng 7 inch.

2. a) Diện tích đáy hình vuông của lều là: .

Thể tích không khí bên trong lều là:

S=19,085=14,08  m2.

Vậy thể tích không khí bên trong của chiếc lều là \[8,4\;\;{{\rm{m}}^3}.\]

b) Diện tích xung quanh của lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot 4 \cdot 3 \cdot 3,18 = 19,08\;\;\left( {{{\rm{m}}^2}} \right)\)

Diện tích cần sơn phủ cho lều là:

\(S = 19,08 - 5 = 14,08\;\;\left( {{{\rm{m}}^2}} \right)\).

Số tiền cần phải trả để hoàn thành việc sơn phủ cho lều là:

\(14,08 \cdot 35\,\,000 = 492\,\,800\) (đồng).

Vậy số tiền cần phải trả để hoàn thành việc sơn phủ cho lều là \(492\,\,800\) đồng.

Câu 2

Cho hai đa thức \(A = {x^2} - 4xy - 4\)\(B = 2{x^2} - 3xy + {y^2} - 4.\)

Đa thức \(M\) và \(P\) thỏa mãn \(B = A + M\,;\, & P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right).\)

a) Hạng tử tự do của đa thức \(A\) là \( - 4\).

b) Với \(x = 1\,;\,\,y = 0\) thì giá trị của biểu thức \(B\) bằng \( - 2.\)

c) \(M = {x^2} + 7xy + {y^2}.\)

d) Giá trị của biểu thức \(P\) không phụ thuộc vào biến \(y\).

Lời giải

Đáp án:               a) Đúng.    b) Sai.        c) Sai.        d) Đúng.

Đa thức \(A\) có hạng tử tự do là \( - 4\). Do đó ý a) đúng.

Thay \(x = 1\,;\,\,y = 0\) vào biểu thức \(B\), ta có:

\(B = 2 \cdot {1^2} - 3 \cdot 1 \cdot 0 + {0^2} - 4 = 2 - 4 = - 2.\)

Vậy với \(x = 1\,;\,\,y = 0\) thì \(B = - 2\). Do đó ý b) sai.

Ta có: \(B = A + M\)

Suy ra \(M = B - A\)

\( = 2{x^2} - 3xy + {y^2} - 4 - \left( {{x^2} - 4xy - 4} \right)\)

\( = 2{x^2} - 3xy + {y^2} - 4 - {x^2} + 4xy + 4\)

\( = {x^2} + xy + {y^2}.\)

Như vậy \(M = {x^2} + xy + {y^2}.\) Do đó ý c) sai.

Ta có \[P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right)\]

\( = \left( {x - 3} \right)\left( {{x^2} + xy + {y^2}} \right) - \left( {{x^2}y - 3xy + x{y^2} - 3{y^2}} \right)\)

\[ = x\left( {{x^2} + xy + {y^2}} \right) - 3\left( {{x^2} + xy + {y^2}} \right) - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} + {x^2}y + x{y^2} - 3{x^2} - 3xy - 3{y^2} - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} - 3{x^2}\].

Như vậy, giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến \(y.\) Do đó ý d) đúng.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP