Cho tứ giác \[ABCD\] có \(\widehat A = 50^\circ \,;\,\,\widehat B = 130^\circ \,;\,\,\widehat C = 80^\circ \). Tính số đo của \(\widehat D\) (đơn vị: độ).
Cho tứ giác \[ABCD\] có \(\widehat A = 50^\circ \,;\,\,\widehat B = 130^\circ \,;\,\,\widehat C = 80^\circ \). Tính số đo của \(\widehat D\) (đơn vị: độ).
![Cho tứ giác \[ABCD\] có \(\widehat A = 50^\circ \,;\,\,\widehat B = 130^\circ \,;\,\,\widehat C = 80^\circ \). Tính số đo của \(\widehat D\) (đơn vị: độ). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid1-1750305887.png)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Ta có \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \) (tổng 4 góc trong tứ giác).
Hay \(50^\circ + 130^\circ + 80^\circ + \widehat D = 360^\circ \).
Do đó \(\widehat D = 360^\circ - \left( {50^\circ + 130^\circ + 80^\circ } \right) = 100^\circ \).
B. TỰ LUẬN (3,0 điểm)
Bài 1. (1,5 điểm) Cho biểu thức \(A = \frac{2}{{{x^2} - 1}}\).
a) Tìm điều kiện xác định của biểu thức \(A\).
b) Tìm giá trị của biểu thức \(A\) khi \(x = - 2.\)
c) Tìm biểu thức \(C\) sao cho \(A + C = B\) biết \(B = \frac{6}{{x - 3}} - \frac{{2{x^2}}}{{1 - {x^2}}}\).
Hướng dẫn giải
a) Điều kiện xác định của biểu thức \(A\) là \({x^2} - 1 \ne 0\) hay \({x^2} \ne 1\), tức \(x \ne 1\) và \(x \ne - 1.\)
b) Thay \(x = - 2\) (thỏa mãn) vào biểu thức \(A\) ta được: \(A = \frac{2}{{{{\left( { - 2} \right)}^2} - 1}} = \frac{2}{{4 - 1}} = \frac{2}{3}.\)
c) Ta có: \(A + C = B.\)
Suy ra \(C = B - A = \frac{6}{{x - 3}} - \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{2}{{{x^2} - 1}}\)
\( = \frac{6}{{x - 3}} + \frac{{2{x^2}}}{{{x^2} - 1}} - \frac{2}{{{x^2} - 1}}\)
\( = \frac{6}{{x - 3}} + \frac{{2{x^2} - 2}}{{{x^2} - 1}}\)
\( = \frac{6}{{x - 3}} + \frac{{2\left( {{x^2} - 1} \right)}}{{{x^2} - 1}}\)\( = \frac{6}{{x - 3}} + \frac{2}{1}\)
\( = \frac{6}{{x - 3}} + \frac{{2x - 6}}{{x - 3}}\)\( = \frac{{2x}}{{x - 3}}\).
Vậy để \(A + C = B\) thì \(C = \frac{{2x}}{{x - 3}}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Diện tích sàn của tự kim tháp là: (m2).
Thể tích của kim tự tháp là: (m3).
b) Diện tích một viên gạch hình vuông là: \({S_{gach}} = {60^2} = 3600\;\;{\rm{c}}{{\rm{m}}^2} = 0,36\;\;{{\rm{m}}^2}\)
Diện tích sàn cần lát của kim tự tháp là: \(1\,\,156 - 156 = 1\,\,000\) (m2).
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên).
Câu 2
A. Có các cạnh bên bằng nhau;
B. Có đáy là hình vuông;
C. Có các mặt bên là các tam giác cân;
Lời giải
Đáp án đúng là: B
Hình chóp tam giác đều có đáy là hình tam giác đều. Do đó khẳng định B là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Hai đỉnh kề với đỉnh \(A\) là \(B\) và \(D\);
B. Hai đỉnh đối nhau là \(A\) và \(C;\) \(B\) và \(D\);
C. Tứ giác \(ABCD\) có 2 đường chéo;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(SH\);
B. \(SA\);
C. \(HA\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


