Câu hỏi:

19/06/2025 10

Cho tứ giác \[ABCD\]\(\widehat A = 50^\circ \,;\,\,\widehat B = 130^\circ \,;\,\,\widehat C = 80^\circ \). Tính số đo của \(\widehat D\) (đơn vị: độ).

Cho tứ giác \[ABCD\] có \(\widehat A = 50^\circ \,;\,\,\widehat B = 130^\circ \,;\,\,\widehat C = 80^\circ \). Tính số đo của \(\widehat D\) (đơn vị: độ). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 100.

Ta có \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \) (tổng 4 góc trong tứ giác).

Hay \(50^\circ + 130^\circ + 80^\circ + \widehat D = 360^\circ \).

Do đó \(\widehat D = 360^\circ - \left( {50^\circ + 130^\circ + 80^\circ } \right) = 100^\circ \).

B. TỰ LUẬN (3,0 điểm)

Bài 1. (1,5 điểm) Cho biểu thức \(A = \frac{2}{{{x^2} - 1}}\).

a) Tìm điều kiện xác định của biểu thức \(A\).

b) Tìm giá trị của biểu thức \(A\) khi \(x = - 2.\)

c) Tìm biểu thức \(C\) sao cho \(A + C = B\) biết \(B = \frac{6}{{x - 3}} - \frac{{2{x^2}}}{{1 - {x^2}}}\).

Hướng dẫn giải

a) Điều kiện xác định của biểu thức \(A\) là \({x^2} - 1 \ne 0\) hay \({x^2} \ne 1\), tức \(x \ne 1\) và \(x \ne - 1.\)

b) Thay \(x = - 2\) (thỏa mãn) vào biểu thức \(A\) ta được: \(A = \frac{2}{{{{\left( { - 2} \right)}^2} - 1}} = \frac{2}{{4 - 1}} = \frac{2}{3}.\)

c) Ta có: \(A + C = B.\)

Suy ra \(C = B - A = \frac{6}{{x - 3}} - \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{2}{{{x^2} - 1}}\)

\( = \frac{6}{{x - 3}} + \frac{{2{x^2}}}{{{x^2} - 1}} - \frac{2}{{{x^2} - 1}}\)

\( = \frac{6}{{x - 3}} + \frac{{2{x^2} - 2}}{{{x^2} - 1}}\)

\( = \frac{6}{{x - 3}} + \frac{{2\left( {{x^2} - 1} \right)}}{{{x^2} - 1}}\)\( = \frac{6}{{x - 3}} + \frac{2}{1}\)

\( = \frac{6}{{x - 3}} + \frac{{2x - 6}}{{x - 3}}\)\( = \frac{{2x}}{{x - 3}}\).

Vậy để \(A + C = B\) thì \(C = \frac{{2x}}{{x - 3}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. Áp dụng định lí Pythagore vào tam giác \[ABC\] vuông tại \[A\], ta có:

\(B{C^2} = A{C^2} + A{B^2} = {\left( {15,5} \right)^2} + {7^2} = 289,25\).

Suy ra  \[BC = \sqrt {289,25} \approx 17\,\,{\rm{(cm)}}\].

\(1\,\,{\rm{inch}} \approx 2,54\,\,{\rm{cm}}\) nên chiếc điện thoại theo hình vẽ là: \(\frac{{17}}{{2,54}} \approx 7\,\,({\rm{inch)}}\).

Vậy chiếc điện thoại theo hình vẽ khoảng 7 inch.

2. a) Diện tích đáy hình vuông của lều là: .

Thể tích không khí bên trong lều là:

S=19,085=14,08  m2.

Vậy thể tích không khí bên trong của chiếc lều là \[8,4\;\;{{\rm{m}}^3}.\]

b) Diện tích xung quanh của lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot 4 \cdot 3 \cdot 3,18 = 19,08\;\;\left( {{{\rm{m}}^2}} \right)\)

Diện tích cần sơn phủ cho lều là:

\(S = 19,08 - 5 = 14,08\;\;\left( {{{\rm{m}}^2}} \right)\).

Số tiền cần phải trả để hoàn thành việc sơn phủ cho lều là:

\(14,08 \cdot 35\,\,000 = 492\,\,800\) (đồng).

Vậy số tiền cần phải trả để hoàn thành việc sơn phủ cho lều là \(492\,\,800\) đồng.

Câu 2

Cho biểu thức \(H = \left( {2x - 3} \right)\left( {x + 7} \right) - 2x\left( {x + 5} \right) - x\). Khẳng định nào sau đây là đúng?

Lời giải

Đáp án đúng là: C

Ta có \(H = \left( {2x - 3} \right)\left( {x + 7} \right) - 2x\left( {x + 5} \right) - x\)

\( = \left( {2{x^2} + 14x - 3x - 21} \right) - \left( {2{x^2} + 10x} \right) - x\)

\( = 2{x^2} + 11x - 21 - 2{x^2} - 10x - x\)

\( = \left( {2{x^2} - 2{x^2}} \right) + \left( {11x - 10x - x} \right) - 21\)\( = - 21 < - 1\).

Vậy \(H < - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam giác \(ABC\) cân tại \(A\) có đường cao \(AH.\) Biết \(AH = 4\;\;{\rm{cm}},\,\,AB = 5\;\;{\rm{cm}}.\) Chu vi tam giác \(ABC\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phân thức \(\frac{A}{B} = \frac{C}{D}\,\,\left( {A,\,\,B \ne 0} \right)\) khi

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Một hình chóp tứ giác đều có cạnh đáy là \(a\) và độ dài trung đoạn là \(b\) thì có diện tích xung quanh là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay