Câu hỏi:
19/06/2025 23
Cho tứ giác \[ABCD\] có \(\widehat A = 50^\circ \,;\,\,\widehat B = 130^\circ \,;\,\,\widehat C = 80^\circ \). Tính số đo của \(\widehat D\) (đơn vị: độ).
Cho tứ giác \[ABCD\] có \(\widehat A = 50^\circ \,;\,\,\widehat B = 130^\circ \,;\,\,\widehat C = 80^\circ \). Tính số đo của \(\widehat D\) (đơn vị: độ).
![Cho tứ giác \[ABCD\] có \(\widehat A = 50^\circ \,;\,\,\widehat B = 130^\circ \,;\,\,\widehat C = 80^\circ \). Tính số đo của \(\widehat D\) (đơn vị: độ). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid1-1750305887.png)
Quảng cáo
Trả lời:
Ta có \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \) (tổng 4 góc trong tứ giác).
Hay \(50^\circ + 130^\circ + 80^\circ + \widehat D = 360^\circ \).
Do đó \(\widehat D = 360^\circ - \left( {50^\circ + 130^\circ + 80^\circ } \right) = 100^\circ \).
B. TỰ LUẬN (3,0 điểm)
Bài 1. (1,5 điểm) Cho biểu thức \(A = \frac{2}{{{x^2} - 1}}\).
a) Tìm điều kiện xác định của biểu thức \(A\).
b) Tìm giá trị của biểu thức \(A\) khi \(x = - 2.\)
c) Tìm biểu thức \(C\) sao cho \(A + C = B\) biết \(B = \frac{6}{{x - 3}} - \frac{{2{x^2}}}{{1 - {x^2}}}\).
Hướng dẫn giải
a) Điều kiện xác định của biểu thức \(A\) là \({x^2} - 1 \ne 0\) hay \({x^2} \ne 1\), tức \(x \ne 1\) và \(x \ne - 1.\)
b) Thay \(x = - 2\) (thỏa mãn) vào biểu thức \(A\) ta được: \(A = \frac{2}{{{{\left( { - 2} \right)}^2} - 1}} = \frac{2}{{4 - 1}} = \frac{2}{3}.\)
c) Ta có: \(A + C = B.\)
Suy ra \(C = B - A = \frac{6}{{x - 3}} - \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{2}{{{x^2} - 1}}\)
\( = \frac{6}{{x - 3}} + \frac{{2{x^2}}}{{{x^2} - 1}} - \frac{2}{{{x^2} - 1}}\)
\( = \frac{6}{{x - 3}} + \frac{{2{x^2} - 2}}{{{x^2} - 1}}\)
\( = \frac{6}{{x - 3}} + \frac{{2\left( {{x^2} - 1} \right)}}{{{x^2} - 1}}\)\( = \frac{6}{{x - 3}} + \frac{2}{1}\)
\( = \frac{6}{{x - 3}} + \frac{{2x - 6}}{{x - 3}}\)\( = \frac{{2x}}{{x - 3}}\).
Vậy để \(A + C = B\) thì \(C = \frac{{2x}}{{x - 3}}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1. Áp dụng định lí Pythagore vào tam giác \[ABC\] vuông tại \[A\], ta có:
\(B{C^2} = A{C^2} + A{B^2} = {\left( {15,5} \right)^2} + {7^2} = 289,25\).
Suy ra \[BC = \sqrt {289,25} \approx 17\,\,{\rm{(cm)}}\].
Vì \(1\,\,{\rm{inch}} \approx 2,54\,\,{\rm{cm}}\) nên chiếc điện thoại theo hình vẽ là: \(\frac{{17}}{{2,54}} \approx 7\,\,({\rm{inch)}}\).
Vậy chiếc điện thoại theo hình vẽ khoảng 7 inch.
2. a) Diện tích đáy hình vuông của lều là: .
Thể tích không khí bên trong lều là:
.
Vậy thể tích không khí bên trong của chiếc lều là \[8,4\;\;{{\rm{m}}^3}.\]
b) Diện tích xung quanh của lều là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot 4 \cdot 3 \cdot 3,18 = 19,08\;\;\left( {{{\rm{m}}^2}} \right)\)
Diện tích cần sơn phủ cho lều là:
\(S = 19,08 - 5 = 14,08\;\;\left( {{{\rm{m}}^2}} \right)\).
Số tiền cần phải trả để hoàn thành việc sơn phủ cho lều là:
\(14,08 \cdot 35\,\,000 = 492\,\,800\) (đồng).
Vậy số tiền cần phải trả để hoàn thành việc sơn phủ cho lều là \(492\,\,800\) đồng.
Lời giải
Đáp án đúng là: A
Diện tích xung quanh của hình chóp tứ giác đều đã cho là \({S_{xq}} = \frac{1}{2} \cdot \left( {4a} \right) \cdot b = 2ab\) (đvdt).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.