Câu hỏi:

19/06/2025 47

1. Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?
Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?  (ảnh 1)

2. Người ta làm mô hình một kim tự tháp ở cổng vào của bảo tàng Louvre. Mô hình có dạng hình chóp tứ giác đều, chiều cao \(21{\rm{ m}}{\rm{,}}\) độ dài cạnh đáy là \(34{\rm{ m}}\).

Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?  (ảnh 2)

Tính tổng diện tích của các tấm kính để phủ kín bốn mặt bên của bảo tàng này (các kết quả làm tròn đến hàng đơn vị).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1. Áp dụng định lí Pytthagore vào tam giác \(ABH\) vuông tại \(H\) ta có:

\(A{B^2} = A{H^2} + B{H^2}\)

Suy ra \(A{H^2} = A{B^2} - B{H^2}\)

Do đó \(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{{3,7}^2} - {{1,2}^2}} = 3,5\;\left( {\rm{m}} \right)\)

Ta có \(\frac{{AH}}{{BH}} = \frac{{3,5}}{{1,2}} \approx 2,9\).

\(2,9 > 2,2\) nên khoảng cách đặt thang cách chân tường là không an toàn.

2. Ta minh họa bảo tàng bằng hình chóp tứ giác sau:

Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?  (ảnh 3)

Đường cao của hình chóp \(SO\) vuông góc với mặt đáy \(ABCD\) nên \(SO \bot OH.\)

Dễ thấy \(OH = \frac{1}{2}DC = \frac{1}{2}.34 = 17{\rm{ }}\left( {\rm{m}} \right)\)

Áp dụng định lí Pythagore vào tam giác \(SOH\) vuông tại \(O\), ta có:

\(S{H^2} = S{O^2} + O{H^2}\)\( = {21^2} + {17^2} = 730\).

Suy ra \(SH = \sqrt {730} \approx 27{\rm{ }}\left( {\rm{m}} \right)\).

Nửa chu vi mặt đáy là: \(P = \frac{1}{2}\left( {34 + 34 + 34 + 34} \right) = 68{\rm{ }}\left( {\rm{m}} \right)\)

Tổng diện tích các tấm kính để phủ kín bốn mặt bên của bảo tàng hình chóp này là:

\({S_{xq}} = P \cdot d = 68 \cdot 27 = 1836{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Vậy tổng diện tích của các tấm kính để phủ kín bốn mặt bên của bảo tàng Louvre là \(1836{\rm{ }}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án:               a) Đúng.    b) Đúng.     c) Sai.        d) Sai.

Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\)

Gọi đường cao của mặt đáy là \(CH\) nên \(CH\) đồng thời là đường trung tuyến của tam giác đều \(ABC.\)

Do đó ý a) đúng.

Vì \(HA = HB = \frac{{AB}}{2} = 30{\rm{ cm}}{\rm{.}}\)

Áp dụng định lý Pythagore vào \(\Delta BHC\) vuông tại \(H\), ta có:

\(C{B^2} = H{B^2} + H{C^2}\) hay \({60^2} = {30^2} + H{C^2}\)

Suy ra \(C{H^2} = {60^2} - {30^2} = 2{\rm{ }}700\) nên \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).  (1)

Gọi \(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)

Áp dụng định lý Pythagore vào \[\Delta SHG\] vuông tại \(G\), ta có:

\(S{H^2} = S{G^2} + H{G^2}\)\( = {90^2} + {30^2} = 9000\)

Suy ra \(SH = \sqrt {9000} = 30\sqrt {10} {\rm{ cm}}{\rm{.}}\)     (2)

Từ (1) và (2) suy ra độ dài cạnh \(SH\) lớn hơn độ dài cạnh \(CH\). Do đó ý c) sai.

Nửa chu vi đáy là: \(P = \frac{1}{2}\left( {60 + 60 + 60} \right) = 90{\rm{ }}\left( {{\rm{cm}}} \right)\)

Vậy diện tích xung quanh của hình chóp \(S.ABC\)

\(S = P.d = 90.30\sqrt {10} \approx 8538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Do đó ý d) sai.

Câu 2

Lời giải

Đáp án đúng là: C
Cho tam giác \(ABC\) vuông có cạnh huyền \(AB = \sqrt {117} \;\;{\rm{cm}}{\rm{,}}\,\,BC = 6\;\;{\rm{cm}}.\) Gọi \(K\) là trung điểm của đoạn thẳng \(AC\). Độ dài \(BK\) là (ảnh 1)

Xét \(\Delta ABC\) vuông tại \(C\), theo định lí Pythagore, ta có:

\(A{C^2} = A{B^2} - B{C^2} = {\left( {\sqrt {117} } \right)^2} - {6^2} = 81\).

Suy ra \(AC = \sqrt {81} = 9\;({\rm{cm)}}\).

Do \(K\)trung điểm của đoạn thẳng \(AC\) nên \(CK = \frac{1}{2}AC = 4,5\;\;({\rm{cm)}}.\)

Xét \(\Delta BCK\) vuông tại \(C\), theo định lí Pythagore ta có:

\(B{K^2} = B{C^2} + C{K^2} = {6^2} + {4,5^2} = 56,25\).

Suy ra \(BK = \sqrt {56,25} = 7,5\;\;({\rm{cm)}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP