Câu hỏi:

19/08/2025 249 Lưu

1. Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?
Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?  (ảnh 1)

2. Người ta làm mô hình một kim tự tháp ở cổng vào của bảo tàng Louvre. Mô hình có dạng hình chóp tứ giác đều, chiều cao \(21{\rm{ m}}{\rm{,}}\) độ dài cạnh đáy là \(34{\rm{ m}}\).

Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?  (ảnh 2)

Tính tổng diện tích của các tấm kính để phủ kín bốn mặt bên của bảo tàng này (các kết quả làm tròn đến hàng đơn vị).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

1. Áp dụng định lí Pytthagore vào tam giác \(ABH\) vuông tại \(H\) ta có:

\(A{B^2} = A{H^2} + B{H^2}\)

Suy ra \(A{H^2} = A{B^2} - B{H^2}\)

Do đó \(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{{3,7}^2} - {{1,2}^2}} = 3,5\;\left( {\rm{m}} \right)\)

Ta có \(\frac{{AH}}{{BH}} = \frac{{3,5}}{{1,2}} \approx 2,9\).

\(2,9 > 2,2\) nên khoảng cách đặt thang cách chân tường là không an toàn.

2. Ta minh họa bảo tàng bằng hình chóp tứ giác sau:

Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?  (ảnh 3)

Đường cao của hình chóp \(SO\) vuông góc với mặt đáy \(ABCD\) nên \(SO \bot OH.\)

Dễ thấy \(OH = \frac{1}{2}DC = \frac{1}{2}.34 = 17{\rm{ }}\left( {\rm{m}} \right)\)

Áp dụng định lí Pythagore vào tam giác \(SOH\) vuông tại \(O\), ta có:

\(S{H^2} = S{O^2} + O{H^2}\)\( = {21^2} + {17^2} = 730\).

Suy ra \(SH = \sqrt {730} \approx 27{\rm{ }}\left( {\rm{m}} \right)\).

Nửa chu vi mặt đáy là: \(P = \frac{1}{2}\left( {34 + 34 + 34 + 34} \right) = 68{\rm{ }}\left( {\rm{m}} \right)\)

Tổng diện tích các tấm kính để phủ kín bốn mặt bên của bảo tàng hình chóp này là:

\({S_{xq}} = P \cdot d = 68 \cdot 27 = 1836{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Vậy tổng diện tích của các tấm kính để phủ kín bốn mặt bên của bảo tàng Louvre là \(1836{\rm{ }}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\] với \(x \ne 1.\)

a) Với \(x \ne 1\) ta có:

\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\]

\[ = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{{2x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]

\( = \frac{{{x^2} + x + 1 + x\left( {x - 1} \right) - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^2} + x + 1 + {x^2} - x - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2{x^2} - 2x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{2x\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2x}}{{{x^2} + x + 1}}\).

Vậy với \(x \ne 1\) thì \(P = \frac{{2x}}{{{x^2} + x + 1}}.\)

b) Với \(x = 2\) (thỏa mãn) thay vào biểu thức \(P\) ta được: \(P = \frac{{2 \cdot 2}}{{{2^2} + 2 + 1}} = \frac{4}{7}.\)

c) Với \(x > 0,x \ne 1\) ta có:

⦁ \(2x > 0;\)

⦁ \({x^2} + x + 1 = {x^2} + x + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0.\)

Do đó \(P = \frac{{2x}}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\) với mọi \(x > 0,x \ne 1\).

Lời giải

a) Vì góc ngoài tại đỉnh \(K\) của tứ giác \(IKLR\) có số đo là \(100^\circ \) nên \(\widehat {IKL} = 180^\circ  - 100^\circ  = 80^\circ \).

Góc ngoài tại đỉnh \(L\) của tứ giác \(IKLR\) có số đo là \(60^\circ \) nên \(\widehat {KLR} = 180^\circ  - 60^\circ  = 120^\circ \).

Ta có tổng các góc trong tứ giác \(IKLR\) là \(360^\circ \) nên \(\widehat {IKL} + \widehat {KLR} + \widehat {R\,} + \widehat {I\,} = 360^\circ \)

Suy ra \(80^\circ  + 120^\circ  + 90^\circ  + x = 360^\circ \)

Do đó \(x = 70^\circ \).

b) Áp dụng định lý Pythagore vào tam giác vuông \(ABC\) vuông tại \(B\) ta có:

\(A{C^2} = A{B^2} + B{C^2}\) suy ra \(B{C^2} = A{C^2} - A{B^2} = {12^2} - {9^2} = 144 - 81 = 63\)

Suy ra \(BC = \sqrt {63} \) (km).

Chi phí làm đường ống từ \(C\) tới điểm \(B\) của công ty trên bằng tiền VNĐ là:

\(\sqrt {63}  \cdot 5\,\,000 \cdot 24\,\,300 \approx 964\,\,376\,\,352,9\) (VNĐ) \( \approx 964\,\,376\,\,000\) (VNĐ).

Câu 3

A. \( - 20x\)                
B. \(50\)               
C. \(20x\);                 
D. \(2{x^2} + 50\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x{\left( {x - 1} \right)^2}\);        
B. \({x^2}\left( {x - 1} \right)\);       
C. \(x\left( {{x^2} - 1} \right)\);      
D. \(x{\left( {x + 1} \right)^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP