Trong các hình dưới đây, hình nào cho biết tia \(Ot\) là tia phân giác của góc nhọn \(xOy\)?

A. Hình 1.
B. Hình 2.
C. Hình 3.
D. Hình 4.
Quảng cáo
Trả lời:
Đáp án đúng là: D
Nhận thấy, ở hình 4 tia \(Ot\) là tia phân giác của góc nhọn \(xOy\) vì tia \(Ot\) nằm giữa hai tia \(Ox,Oy\) đồng thời chia góc nhọn \(xOy\) thành hai phần bằng nhau.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a)

Ta có: \(\widehat {tMy} = \widehat {tNz} = 120^\circ \) và hai góc ở vị trí đồng vị nên \(yy'\parallel zz'\).
Suy ra \(\widehat {ABN} = \widehat {xAM} = 70^\circ \) (hai góc đồng vị).
Vì \(\widehat {BAM}\) và \(\widehat {xAM}\) là hai góc kề bù nên \(\widehat {BAM} + \widehat {xAM} = 180^\circ \)
Do đó \(\widehat {BAM} = 180^\circ - \widehat {xAM} = 180^\circ - 70^\circ = 110^\circ \).
Ta có \(AC\) là phân giác của \(\widehat {BAM}\) nên \(\widehat {BAC} = \widehat {CAM} = \frac{{\widehat {BAM}}}{2} = \frac{{110^\circ }}{2} = 55^\circ .\)
Vì \(yy'\parallel zz'\) nên \(\widehat {ACB} = \widehat {MAC} = 55^\circ \) (so le trong).
Lại có \(\widehat {ACB}\) và \(\widehat {ACN}\) là hai góc kề bù nên \(\widehat {ACN} + \widehat {ACB} = 180^\circ \)
Suy ra \(\widehat {ACN} = 180^\circ - \widehat {ACB} = 180^\circ - 55^\circ = 125^\circ \).
b)

Ta có \(\widehat {ABN}\) và \(\widehat {x'BN}\) là hai góc kề bù nên \(\widehat {ABN} + \widehat {x'BN} = 180^\circ \)
Suy ra \[\widehat {x'BN} = 180^\circ - \widehat {ABN} = 180^\circ - 70^\circ = 110^\circ \].
Mà \(Bk\) là tia phân giác của \(\widehat {x'BN}\) nên \(\widehat {x'Bk} = \widehat {kBC} = \frac{{110^\circ }}{2} = 55^\circ \).
Ta có \(\widehat {x'Bk} = \widehat {BAC} = 55^\circ \) và hai góc ở vị trí đồng vị nên \(AC\parallel Bk.\)
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng.b) Đúng.c) Đúng.d) Sai.
• Số học sinh Xuất sắc và Giỏi so với số học sinh cả lớp là \(1 - \frac{9}{{16}} = \frac{7}{{16}}\) (số học sinh).
Do đó, ý a) là đúng.
• Số học sinh Khá lớp 7A là: \(\frac{9}{{16}}.48 = 27\) (học sinh). Do đó, ý b) đúng.
• Số học sinh Giỏi và Xuất sắc của lớp 7A là: \(48 - 27 = 21\) (học sinh). Do đó, ý c) đúng.
• Ta có số học sinh Giỏi bằng \(\frac{{11}}{{10}}\) số học sinh Xuất sắc nên ta có số học sinh Giỏi là:
\(21:\left( {11 + 10} \right).11 = 11\) (học sinh).
Số học sinh Xuất sắc là: \(21 - 11 = 10\) (học sinh). Do đó, ý d) là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[x - \frac{1}{5} = \frac{3}{5}\].
B. \[x - \frac{1}{2} = \frac{3}{5}:\frac{2}{5}\].
C. \[x - \frac{2}{5} = \frac{3}{5} + \frac{1}{2}\].
D. \[x - \frac{1}{2} = \frac{3}{5} + \frac{2}{5}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(135^\circ .\)
B. \(35^\circ .\)
C. \(45^\circ .\)
D. \(145^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\widehat {xAm}\) và \(\widehat {mAy}\) là hai góc kề bù.
B. \(\widehat {xAm} + \widehat {mAy} = 180^\circ .\)
C. \(\widehat {xAm}\) và \(\widehat {xAy}\) là hai góc kề nhau.
D. \(\widehat {mAy}\) là góc tù.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


