Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn
Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn
Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Tìm giá trị của \(x,\) biết: \(\frac{5}{4}x - \frac{3}{{12}} = \frac{{ - 7}}{4}\) (kết quả ghi dưới dạng số thập phân).
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án: \( - 1,2\).
Ta có: \(\frac{5}{4}x - \frac{3}{{12}} = \frac{{ - 7}}{4}\)
\(\frac{5}{4}x = \frac{{ - 7}}{4} + \frac{3}{{12}}\)
\(\frac{5}{4}x = - \frac{{18}}{{12}}\)
\(x = - \frac{{18}}{{12}}:\frac{5}{4}\)
\(x = - \frac{3}{2}.\frac{4}{5}\)
\(x = - \frac{6}{5}\)
\(x = - 1,2\).
Vậy \(x = - 1,2\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a)
Ta có: \(\widehat {tMy} = \widehat {tNz} = 120^\circ \) và hai góc ở vị trí đồng vị nên \(yy'\parallel zz'\).
Suy ra \(\widehat {ABN} = \widehat {xAM} = 70^\circ \) (hai góc đồng vị).
Vì \(\widehat {BAM}\) và \(\widehat {xAM}\) là hai góc kề bù nên \(\widehat {BAM} + \widehat {xAM} = 180^\circ \)
Do đó \(\widehat {BAM} = 180^\circ - \widehat {xAM} = 180^\circ - 70^\circ = 110^\circ \).
Ta có \(AC\) là phân giác của \(\widehat {BAM}\) nên \(\widehat {BAC} = \widehat {CAM} = \frac{{\widehat {BAM}}}{2} = \frac{{110^\circ }}{2} = 55^\circ .\)
Vì \(yy'\parallel zz'\) nên \(\widehat {ACB} = \widehat {MAC} = 55^\circ \) (so le trong).
Lại có \(\widehat {ACB}\) và \(\widehat {ACN}\) là hai góc kề bù nên \(\widehat {ACN} + \widehat {ACB} = 180^\circ \)
Suy ra \(\widehat {ACN} = 180^\circ - \widehat {ACB} = 180^\circ - 55^\circ = 125^\circ \).
b)
Ta có \(\widehat {ABN}\) và \(\widehat {x'BN}\) là hai góc kề bù nên \(\widehat {ABN} + \widehat {x'BN} = 180^\circ \)
Suy ra \[\widehat {x'BN} = 180^\circ - \widehat {ABN} = 180^\circ - 70^\circ = 110^\circ \].
Mà \(Bk\) là tia phân giác của \(\widehat {x'BN}\) nên \(\widehat {x'Bk} = \widehat {kBC} = \frac{{110^\circ }}{2} = 55^\circ \).
Ta có \(\widehat {x'Bk} = \widehat {BAC} = 55^\circ \) và hai góc ở vị trí đồng vị nên \(AC\parallel Bk.\)
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng.b) Đúng.c) Đúng.d) Sai.
• Số học sinh Xuất sắc và Giỏi so với số học sinh cả lớp là \(1 - \frac{9}{{16}} = \frac{7}{{16}}\) (số học sinh).
Do đó, ý a) là đúng.
• Số học sinh Khá lớp 7A là: \(\frac{9}{{16}}.48 = 27\) (học sinh). Do đó, ý b) đúng.
• Số học sinh Giỏi và Xuất sắc của lớp 7A là: \(48 - 27 = 21\) (học sinh). Do đó, ý c) đúng.
• Ta có số học sinh Giỏi bằng \(\frac{{11}}{{10}}\) số học sinh Xuất sắc nên ta có số học sinh Giỏi là:
\(21:\left( {11 + 10} \right).11 = 11\) (học sinh).
Số học sinh Xuất sắc là: \(21 - 11 = 10\) (học sinh). Do đó, ý d) là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.