Câu hỏi:

28/06/2025 11

Cho các số sau: \(3,75;{\rm{ }}\frac{6}{5};{\rm{ }} - 5\pi ;{\rm{ }}\sqrt 7 ;{\rm{ }}\sqrt 2 + 2;{\rm{ }}\sqrt {25} ;{\rm{ 0,1232323}}....{\rm{; }}\frac{2}{3}.\) Trong các số trên, có bao nhiêu số là số vô tỉ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(3\).

Nhận thấy:

• Các số \(3,75;{\rm{ }}\frac{6}{5};{\rm{ }}\frac{2}{3}\) là các số hữu tỉ.

• \(\sqrt {25} = \sqrt {{5^2}} = 5\) là số hữu tỉ.

• \({\rm{0,1232323}}.... = 0,{\rm{1}}\left( {23} \right)\) là số thập phân vô hạn tuần hoàn.

• Các số vô tỉ trong các số trên là \( - 5\pi ;{\rm{ }}\sqrt 7 ;{\rm{ }}\sqrt 2 + 2\).

Do đó, có 3 số vô tỉ trong các số trên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a)

(1,0 điểm) Cho hình bên, biết   ˆ x A y = 70 ∘ ; ˆ t M y = 120 ∘ ; ˆ t N z = 120 ∘  .    a) Vẽ tia phân giác của   ˆ B A M   cắt đường thẳng   z z ′   tại   C  . Tính số đo   ˆ A C N  .  b) Vẽ tia   B k   là tia phân giác của   ˆ x ′ B N  . Chứng minh   A C ∥ B k . (ảnh 2)

Ta có: \(\widehat {tMy} = \widehat {tNz} = 120^\circ \) và hai góc ở vị trí đồng vị nên \(yy'\parallel zz'\).

Suy ra \(\widehat {ABN} = \widehat {xAM} = 70^\circ \) (hai góc đồng vị).

Vì \(\widehat {BAM}\) và \(\widehat {xAM}\) là hai góc kề bù nên \(\widehat {BAM} + \widehat {xAM} = 180^\circ \)

Do đó \(\widehat {BAM} = 180^\circ - \widehat {xAM} = 180^\circ - 70^\circ = 110^\circ \).

Ta có \(AC\) là phân giác của \(\widehat {BAM}\) nên \(\widehat {BAC} = \widehat {CAM} = \frac{{\widehat {BAM}}}{2} = \frac{{110^\circ }}{2} = 55^\circ .\)

Vì \(yy'\parallel zz'\) nên \(\widehat {ACB} = \widehat {MAC} = 55^\circ \) (so le trong).

Lại có \(\widehat {ACB}\) và \(\widehat {ACN}\) là hai góc kề bù nên \(\widehat {ACN} + \widehat {ACB} = 180^\circ \)

Suy ra \(\widehat {ACN} = 180^\circ - \widehat {ACB} = 180^\circ - 55^\circ = 125^\circ \).

b)

(1,0 điểm) Cho hình bên, biết   ˆ x A y = 70 ∘ ; ˆ t M y = 120 ∘ ; ˆ t N z = 120 ∘  .    a) Vẽ tia phân giác của   ˆ B A M   cắt đường thẳng   z z ′   tại   C  . Tính số đo   ˆ A C N  .  b) Vẽ tia   B k   là tia phân giác của   ˆ x ′ B N  . Chứng minh   A C ∥ B k . (ảnh 3)

Ta có \(\widehat {ABN}\) và \(\widehat {x'BN}\) là hai góc kề bù nên \(\widehat {ABN} + \widehat {x'BN} = 180^\circ \)

Suy ra \[\widehat {x'BN} = 180^\circ - \widehat {ABN} = 180^\circ - 70^\circ = 110^\circ \].

Mà \(Bk\) là tia phân giác của \(\widehat {x'BN}\) nên \(\widehat {x'Bk} = \widehat {kBC} = \frac{{110^\circ }}{2} = 55^\circ \).

Ta có \(\widehat {x'Bk} = \widehat {BAC} = 55^\circ \) và hai góc ở vị trí đồng vị nên \(AC\parallel Bk.\)

Lời giải

Hướng dẫn giải

Đáp án: \( - 1,2\).

Ta có: \(\frac{5}{4}x - \frac{3}{{12}} = \frac{{ - 7}}{4}\)

\(\frac{5}{4}x = \frac{{ - 7}}{4} + \frac{3}{{12}}\)

\(\frac{5}{4}x = - \frac{{18}}{{12}}\)

\(x = - \frac{{18}}{{12}}:\frac{5}{4}\)

\(x = - \frac{3}{2}.\frac{4}{5}\)

\(x = - \frac{6}{5}\)

\(x = - 1,2\).

Vậy \(x = - 1,2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP