Câu hỏi:

29/06/2025 4

A. TRẮC NGHIỆM (7,0 điểm)

Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Số nào trong các số dưới đây không là số hữu tỉ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Số hữu tỉ là số viết được dưới dạng \(\frac{a}{b}\) với \(a,b \in \mathbb{Z},b \ne 0\).

Do đó, \(\frac{3}{0}\) không là số hữu tỉ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \( - \frac{4}{3} + \frac{3}{2}:\frac{9}{4}\)

\( = - \frac{4}{3} + \frac{3}{2}.\frac{4}{9}\)

\( = - \frac{4}{3} + \frac{2}{3}\)

\( = \frac{{ - 2}}{3}\).

b) \[5:{\left( { - \frac{5}{2}} \right)^2} + \frac{2}{{15}}:\frac{2}{3} - {\left( { - 100} \right)^0}\]

\( = 5:\frac{{25}}{4} + \frac{2}{{15}}.\frac{3}{2} - 1\)

\( = 5.\frac{4}{{25}} + \frac{1}{5} - 1\)

\( = \frac{4}{5} + \frac{1}{5} - 1\)

\( = \frac{5}{5} - 1\)

\( = 1 - 1\)

\( = 0.\)

c) \(\frac{4}{5}.\frac{3}{7} - \frac{{ - 4}}{7}:\sqrt {\frac{{25}}{{16}}} - \left| { - 1} \right|\)

\( = \frac{4}{5} \cdot \frac{3}{7} - \frac{{ - 4}}{7}:\sqrt {{{\left( {\frac{5}{4}} \right)}^2}} - 1\)

\( = \frac{4}{5} \cdot \frac{3}{7} + \frac{4}{7}:\frac{5}{4} - 1\)

\( = \frac{4}{5} \cdot \frac{3}{7} + \frac{4}{7} \cdot \frac{4}{5} - 1\)

\( = \frac{4}{5} \cdot \left( {\frac{3}{7} + \frac{4}{7}} \right) - 1\)

\( = \frac{4}{5} \cdot \frac{7}{7} - 1 = \frac{4}{5} \cdot 1 - 1\)

\( = \frac{4}{5} - 1 = \frac{{ - 1}}{5}.\)

Lời giải

Hướng dẫn giải

Ta có: \(5A = 1 + \frac{2}{5} + \frac{3}{{{5^2}}} + \frac{4}{{{5^3}}} + ... + \frac{{1\,\,000}}{{{5^{999}}}}.\)

Suy ra \(5A - A = \left( {1 + \frac{2}{5} + \frac{3}{{{5^2}}} + \frac{4}{{{5^3}}} + ... + \frac{{1\,\,000}}{{{5^{999}}}}} \right) - \left( {\frac{1}{5} + \frac{2}{{{5^2}}} + \frac{3}{{{5^3}}} + \frac{4}{{{5^4}}} + ... + \frac{{1\,\,000}}{{{5^{1\,\,000}}}}} \right)\)

\(4A = 1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}} - \frac{{1\,\,000}}{{{5^{1\,\,000}}}}.\)

Đặt \(B = \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}}\).

Ta có \(5B = 1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{998}}}}.\)

Suy ra \(5B - B = \left( {1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{998}}}}} \right) - \left( {\frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}}} \right)\)

\(4B = 1 - \frac{1}{{{5^{999}}}}\) nên \(B = \frac{1}{4} \cdot \left( {1 - \frac{1}{{{5^{999}}}}} \right)\).

Do đó, \(4A = 1 + \frac{1}{4} \cdot \left( {1 - \frac{1}{{{5^{999}}}}} \right) - \frac{{1\,\,000}}{{{5^{1\,\,000}}}} = \frac{5}{4} - \frac{1}{4} \cdot \frac{1}{{{5^{999}}}} - \frac{{1\,\,000}}{{{5^{1\,\,000}}}}.\)

Khi đó, \(A = \frac{5}{{16}} - \frac{1}{{16}} \cdot \frac{1}{{{5^{999}}}} - \frac{{250}}{{{5^{1\,\,000}}}} < \frac{5}{{16}}.\)

Vậy \(A < \frac{5}{{16}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP