Câu hỏi:
29/06/2025 11
Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn
Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn
Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Tìm giá trị của \(x,\) biết: \(\frac{1}{4} - \frac{5}{2}x = \frac{3}{2}\) (kết quả ghi dưới dạng số thập phân).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: \( - 0,5\).
Ta có: \(\frac{1}{4} - \frac{5}{2}x = \frac{3}{2}\)
\(\frac{5}{2}x = \frac{1}{4} - \frac{3}{2}\)
\(\frac{5}{2}x = - \frac{5}{4}\)
\(x = - \frac{5}{4}:\frac{5}{2}\)
\(x = - \frac{5}{4}.\frac{2}{5}\)
\(x = - \frac{1}{2}\)
\(x = - 0,5\).
Vậy \(x = - 0,5\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) \( - \frac{4}{3} + \frac{3}{2}:\frac{9}{4}\) \( = - \frac{4}{3} + \frac{3}{2}.\frac{4}{9}\) \( = - \frac{4}{3} + \frac{2}{3}\) \( = \frac{{ - 2}}{3}\). |
b) \[5:{\left( { - \frac{5}{2}} \right)^2} + \frac{2}{{15}}:\frac{2}{3} - {\left( { - 100} \right)^0}\] \( = 5:\frac{{25}}{4} + \frac{2}{{15}}.\frac{3}{2} - 1\) \( = 5.\frac{4}{{25}} + \frac{1}{5} - 1\) \( = \frac{4}{5} + \frac{1}{5} - 1\) \( = \frac{5}{5} - 1\) \( = 1 - 1\) \( = 0.\) |
c) \(\frac{4}{5}.\frac{3}{7} - \frac{{ - 4}}{7}:\sqrt {\frac{{25}}{{16}}} - \left| { - 1} \right|\) \( = \frac{4}{5} \cdot \frac{3}{7} - \frac{{ - 4}}{7}:\sqrt {{{\left( {\frac{5}{4}} \right)}^2}} - 1\) \( = \frac{4}{5} \cdot \frac{3}{7} + \frac{4}{7}:\frac{5}{4} - 1\) \( = \frac{4}{5} \cdot \frac{3}{7} + \frac{4}{7} \cdot \frac{4}{5} - 1\) \( = \frac{4}{5} \cdot \left( {\frac{3}{7} + \frac{4}{7}} \right) - 1\) \( = \frac{4}{5} \cdot \frac{7}{7} - 1 = \frac{4}{5} \cdot 1 - 1\) \( = \frac{4}{5} - 1 = \frac{{ - 1}}{5}.\) |
Lời giải
Hướng dẫn giải
Ta có: \(5A = 1 + \frac{2}{5} + \frac{3}{{{5^2}}} + \frac{4}{{{5^3}}} + ... + \frac{{1\,\,000}}{{{5^{999}}}}.\)
Suy ra \(5A - A = \left( {1 + \frac{2}{5} + \frac{3}{{{5^2}}} + \frac{4}{{{5^3}}} + ... + \frac{{1\,\,000}}{{{5^{999}}}}} \right) - \left( {\frac{1}{5} + \frac{2}{{{5^2}}} + \frac{3}{{{5^3}}} + \frac{4}{{{5^4}}} + ... + \frac{{1\,\,000}}{{{5^{1\,\,000}}}}} \right)\)
\(4A = 1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}} - \frac{{1\,\,000}}{{{5^{1\,\,000}}}}.\)
Đặt \(B = \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}}\).
Ta có \(5B = 1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{998}}}}.\)
Suy ra \(5B - B = \left( {1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{998}}}}} \right) - \left( {\frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}}} \right)\)
\(4B = 1 - \frac{1}{{{5^{999}}}}\) nên \(B = \frac{1}{4} \cdot \left( {1 - \frac{1}{{{5^{999}}}}} \right)\).
Do đó, \(4A = 1 + \frac{1}{4} \cdot \left( {1 - \frac{1}{{{5^{999}}}}} \right) - \frac{{1\,\,000}}{{{5^{1\,\,000}}}} = \frac{5}{4} - \frac{1}{4} \cdot \frac{1}{{{5^{999}}}} - \frac{{1\,\,000}}{{{5^{1\,\,000}}}}.\)
Khi đó, \(A = \frac{5}{{16}} - \frac{1}{{16}} \cdot \frac{1}{{{5^{999}}}} - \frac{{250}}{{{5^{1\,\,000}}}} < \frac{5}{{16}}.\)
Vậy \(A < \frac{5}{{16}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.