Câu hỏi:

30/06/2025 10

Một người bán cam, buổi sáng bán được \(60\% \) số cam mang đi, buổi chiều bán được \(\frac{{13}}{{18}}\) số cam còn lại. Lúc về, người đó còn 20 quả cam.

a) Hỏi số cam người đó mang đi bán là bao nhiêu?

b) Tính tỉ số phần trăm số cam người đó bán được buổi sáng so với tổng số cam bán được trong ngày.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Số cam còn lại sau buổi sáng là: \(100\% - 60\% = 40\% \) (tổng số cam).

Số cam buổi chiều bán được là \(\frac{{13}}{{18}} \cdot 40\% = \frac{{13}}{{45}}\) (tổng số cam).

Số cam còn lại sau cả một ngày bán là: \(40\% - \frac{{13}}{{45}} = \frac{1}{9}\) (tổng số cam).

\(20\) quả cam chiếm \(\frac{1}{9}\) tổng số cam nên số cam người đó mang đi bán là: \(20:\frac{1}{9} = 180\) (quả).

b) Số quả cam bán trong buổi sáng là: \(180 \cdot 60\% = 108\) (quả).

Số quả cam bán trong buổi chiều là: \(180 - 108 - 20 = 52\) (quả).

Tổng số cam bán được trong ngày là: \(108 + 52 = 160\) (quả).

Tỉ số phần trăm số cam người đó bán được buổi sáng so với tổng số cam bán được trong ngày là \(\frac{{108}}{{160}} \cdot 100\% = 67,5\% .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\frac{1}{5} + \frac{{ - 5}}{{19}} + \frac{4}{5} + \frac{{ - 14}}{{19}}\)

\( = \left( {\frac{1}{5} + \frac{4}{5}} \right) + \left( {\frac{{ - 5}}{{19}} + \frac{{ - 14}}{{19}}} \right)\)

\( = \frac{5}{5} + \frac{{ - 19}}{{19}}\)

\( = 1 + \left( { - 1} \right) = 0.\)

b) \(\left( { - 0,4} \right) \cdot \left( { - 0,5} \right) \cdot \left( { - 0,8} \right)\)

\[ = 0,2 \cdot \left( { - 0,8} \right)\]

\[ = - 0,16.\]

c) \(\frac{{ - 3}}{5}:\frac{7}{5} - \frac{3}{5}:\frac{7}{5} + 2\frac{3}{5}\)

\( = \frac{{ - 3}}{5} \cdot \frac{5}{7} - \frac{3}{5} \cdot \frac{5}{7} + 2 + \frac{3}{5}\)

\[ = \frac{5}{7} \cdot \left( {\frac{{ - 3}}{5} - \frac{3}{5}} \right) + 2 + \frac{3}{5}\]

\[ = \frac{5}{7} \cdot \frac{{ - 6}}{5} + 2 + \frac{3}{5}\]

\[ = \frac{{ - 6}}{7} + 2 + \frac{3}{5}\]

\[ = \frac{{ - 30}}{{35}} + \frac{{70}}{{35}} + \frac{{21}}{{35}}\]

\[ = \frac{{61}}{{35}}.\]

d) \(1,9 + \left( {2,51 - 2,13 \cdot 4} \right) - \left( {96 \cdot 2,13 - 99 \cdot 2,51} \right)\)

\( = 1,9 + 2,51 - 2,13 \cdot 4 - 96 \cdot 2,13 + 99 \cdot 2,51\)

\( = \left( {2,51 + 99 \cdot 2,51} \right) - \left( {2,13 \cdot 4 + 96 \cdot 2,13} \right) + 1,9\)

\( = 2,51 \cdot \left( {1 + 99} \right) - 2,13 \cdot \left( {4 + 96} \right) + 1,9\)

\( = 2,51 \cdot 100 - 2,13 \cdot 100 + 1,9\)

\( = 251 - 213 + 1,9\)

\( = 38 + 1,9\)

\( = 39,9.\)

Lời giải

1) a) Số học sinh giỏi Toán của lớp 6E là nhiều nhất (20 bạn).

Số học sinh giỏi Ngữ văn của lớp 6A là ít nhất (7 bạn).

b) Số học sinh giỏi Toán của lớp 6C chiếm số phần trăm trong tổng số học sinh giỏi môn Toán của cả 5 lớp là: \(\frac{{15}}{{9 + 10 + 15 + 16 + 20}} \cdot 100\% \approx 21,43\% .\)

c) Bạn An nói lớp 6D có sĩ số là 34 học sinh có thể chưa đúng vì trong lớp có thể có học sinh không giỏi môn Toán, hoặc học sinh không giỏi môn Ngữ văn, hoặc học sinh giỏi cả hai môn.

2) Số chấm xuất hiện là số không vượt quá 4 là: 1 chấm, 2 chấm, 3 chấm, 4 chấm.

Số lần xuất hiện mặt có số chấm không vượt quá 4 là: \[15 + 20 + 18 + 22 = 75.\]

Xác suất thực nghiệm của sự kiện số chấm xuất hiện là số không vượt quá 4 là: \(\frac{{75}}{{100}} = \frac{3}{4}.\)

Câu 4

     1) Điểm \(A\) nằm trên tia \(Ox\) sao cho \(OA = 4{\rm{\;cm}}.\) Trên tia đối của tia \(Ox\) lấy điểm \(B\)\(M\) sao cho \(OB = 8{\rm{\;cm}}\)\(OM = OA.\)

         a) Điểm \(O\) có phải là trung điểm của đoạn thẳng \(AM\) không? Tại sao?

         b) Tính độ dài đoạn thẳng \(BM\)\(AB.\)

         c) Gọi \(C\) là trung điểm của đoạn thẳng \(AB.\) Chứng minh \(C\) là trung điểm của đoạn thẳng \(OM.\)

     2) Ta có thể xem kim phút và kim giờ của đồng hồ là hai tia chung gốc (gốc trùng với trục quay của hai kim). Tại mỗi thời điểm hai kim tạo thành một góc.

         a) Khi kim giờ và kim phút thay nhau chỉ số 12 và số 6 thì tạo thành một góc có số đo là bao nhiêu độ?

         b) Góc tạo bởi kim phút và kim giờ lúc 2 giờ có số đo là bao nhiêu độ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP