Câu hỏi:

30/06/2025 81 Lưu

Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn

Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Bác Cường mua \(39\) mớ rau gồm ba loại: rau muống giá \(6\) nghìn đồng một mớ, rau cải giá \(8\) nghìn đồng một mớ, rau đay giá \(4\) nghìn đồng một mớ. Biết rằng số tiền bác Cường mua mỗi loại rau là như nhau. Gọi \(x,y,z\) lần lượt là số mớ rau bác Cường mua gồm rau muống, rau cải và rau đay.

a) Điều kiện của \(x,y,z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 39.\)

b) Phương trình biểu diễn tổng số rau bác Cường mua là \(x + y + z = 39\).

c) Số tiền bác Cường mua mỗi loại rau là như nhau nên ta có tỉ lệ thức \(\frac{x}{6} = \frac{y}{8} = \frac{z}{4}.\)

d) Loại rau bác Cường mua nhiều nhất là rau đay với \(12\) mớ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đc) Sd) Đ

Gọi \(x,y,z\) lần lượt là số mớ rau bác Cường mua gồm rau muống, rau cải và rau đay.

Điều kiện của \(x,y,z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 39.\)

Phương trình biểu diễn tổng số rau bác Cường mua là \(x + y + z = 39\).

Số tiền bác Cường mua mỗi loại rau là như nhau nên ta có tỉ lệ thức \(6x = 8y = 4z\) hay

\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{8}}} = \frac{z}{{\frac{1}{4}}}.\)

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{8}}} = \frac{z}{{\frac{1}{4}}} = \frac{{x + y + z}}{{\frac{1}{6} + \frac{1}{8} + \frac{1}{4}}} = \frac{{39}}{{\frac{{13}}{{24}}}} = 72\).

Suy ra \(x = \frac{1}{6}.72 = 12;y = \frac{1}{8}.72 = 9;z = \frac{1}{4}.72 = 18\).

Do đó, bác Cường mua số mớ rau muống, rau cải, rau đay lần lượt là \(12\) mớ, \(9\) mớ và \(18\) mớ.

Câu hỏi cùng đoạn

Câu 2:

Cho \(\frac{x}{3} = \frac{y}{5}\) và \(x + y = 24\). Tính giá trị của \(3x + 5y\).

Trả lời:

Xem lời giải

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(102\)

Ta có \(\frac{x}{3} = \frac{y}{5}\) nên áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{24}}{8} = 3\).

Suy ra \(\frac{x}{3} = 3\) nên \(x = 9\), \(\frac{y}{5} = 3\) nên \(y = 15.\)

Do đó, \(3x + 5y = 3.9 + 5.15 = 102\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(CG = \frac{{GN}}{2}.\)

B. \(GM = \frac{{GB}}{3}.\)
C. \(GB = \frac{2}{3}GC.\)
D. \(GN = \frac{{GC}}{2}.\)

Lời giải

Đáp án đúng là: D

Ta có \(G\) là giao của hai trung tuyến \(BM\) và \(CN\) nên \(G\) là trọng tâm của tam giác \(ABC\).

Do đó, \(GN = \frac{{GC}}{2}.\)

Lời giải

Hướng dẫn giải

Gọi \(a,b{\rm{ }}\left( {\rm{m}} \right)\) lần lượt là chiều dài, chiều rộng của mảnh đất \(\left( {a > 20} \right)\).

Theo đề bài ta có \(a - b = 20\) và \(\frac{a}{9} = \frac{b}{5}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a}{9} = \frac{b}{5} = \frac{{a - b}}{{9 - 5}} = \frac{{20}}{4} = 5\).

Do đó, \(\frac{a}{9} = 5\), suy ra \(a = 9.5 = 45\) và \(\frac{b}{5} = 5\) suy ra \(b = 5.5 = 25\).

Do đó, chu vi của mảnh đất là \(2.\left( {45 + 25} \right) = 140{\rm{ }}\left( {\rm{m}} \right)\).

Số tiền ông Bình mua kẽm gai để làm hàng rào là: \(140.5{\rm{ }}500 = 770{\rm{ 000}}\) (đồng)

Vậy số tiền ông Bình làm hàng rào là: \(770{\rm{ }}000 + 2{\rm{ 50}}0{\rm{ }}000 = 3{\rm{ }}270{\rm{ }}000\) (đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP