(1,0 điểm) Cho tam giác \(ABC\) có \(M\) là trung điểm của \(AC\). Trên đoạn \(BM\) lấy điểm \(K\) sao cho \(MK = \frac{1}{2}KB\). Điểm \(H\) thuộc tia đối của tia \(MK\) sao cho \(BH = 2BK.\) Gọi \(I\) là điểm thuộc cạnh \(AC\) và \(IC = \frac{1}{3}CA\). Đường \(KI\) cắt \(HC\) ở \(E\).
a) Chứng minh \(I\) là trọng tâm của \(\Delta HKC\) và \(E\) là trung điểm của \(HC.\)
b) Tính các tỉ số \(\frac{{IE}}{{IK}};\frac{{MI}}{{AC}}\).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Xét \(\Delta HKC\), có:
Ta có: \(BH = 2BK\) hay \(BK + KH = 2BK\) suy ra \(KH = BK.\)
Mà \(MK = \frac{1}{2}KB\) nên \(MK = \frac{1}{2}KH\) hay \(M\) là trung điểm của \(KH\).
Lại có: \(IC = \frac{1}{3}CA = \frac{1}{3}.2MC = \frac{2}{3}MC\) với \(MC\) là trung tuyến của \(\Delta HKC\).
Suy ra \(I\) là trọng tâm của \(\Delta HKC\).
Mà đường thẳng \(KI\) cắt \(HC\) ở \(E\) nên \(E\) là trung điểm của \(HC.\)
b) Ta có \(I\) là trọng tâm của \(\Delta HKC\) nên \(\frac{{IE}}{{KE}} = \frac{2}{3}\) và \(\frac{{IK}}{{KE}} = \frac{1}{3}\) do đó, \(\frac{{IE}}{{IK}} = \frac{1}{2}.\)
Ta có \(\frac{{MI}}{{MC}} = \frac{1}{3}\) hay \(MI = \frac{1}{3}MC\).
Mà \(MC = \frac{1}{2}AC\).
Suy ra \(MI = \frac{1}{3}.\frac{1}{2}AC = \frac{1}{6}AC\).
Do đó, \(\frac{{MI}}{{AC}} = \frac{1}{6}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đb) Đc) Sd) Đ
Gọi \(x,y,z\) lần lượt là số mớ rau bác Cường mua gồm rau muống, rau cải và rau đay.
Điều kiện của \(x,y,z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 39.\)
Phương trình biểu diễn tổng số rau bác Cường mua là \(x + y + z = 39\).
Số tiền bác Cường mua mỗi loại rau là như nhau nên ta có tỉ lệ thức \(6x = 8y = 4z\) hay
\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{8}}} = \frac{z}{{\frac{1}{4}}}.\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{8}}} = \frac{z}{{\frac{1}{4}}} = \frac{{x + y + z}}{{\frac{1}{6} + \frac{1}{8} + \frac{1}{4}}} = \frac{{39}}{{\frac{{13}}{{24}}}} = 72\).
Suy ra \(x = \frac{1}{6}.72 = 12;y = \frac{1}{8}.72 = 9;z = \frac{1}{4}.72 = 18\).
Do đó, bác Cường mua số mớ rau muống, rau cải, rau đay lần lượt là \(12\) mớ, \(9\) mớ và \(18\) mớ.
Lời giải
Đáp án đúng là: D
Ta có \(G\) là giao của hai trung tuyến \(BM\) và \(CN\) nên \(G\) là trọng tâm của tam giác \(ABC\).
Do đó, \(GN = \frac{{GC}}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.