Câu hỏi:

30/06/2025 20

Một trại chăn nuôi gồm gà, vịt và heo. Biết số con gà, vịt và heo lần lượt tỉ lệ với \(6;5;4\) và tổng số con là \(150\) con. Hỏi trại chăn nuôi có bao nhiêu con heo?

Trả lời:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(40\)

Gọi số con gà, vịt và heo lần lượt là \(x,y,z\) (con) \(\left( {x,y,z \in {\mathbb{N}^*};x,y,z < 150} \right)\).

Do tổng số con gà, vịt và heo là \(150\) con nên \(x + y + z = 150\).

Do số con gà, vịt và heo lần lượt tỉ lệ với \(6;5;4\) nên \(\frac{x}{6} = \frac{y}{5} = \frac{z}{4}\).

Áp dụng tính chất của dãy tỉ số bằng nhau nên ta có:

\(\frac{x}{6} = \frac{y}{5} = \frac{z}{4} = \frac{{x + y + z}}{{6 + 5 + 4}} = \frac{{150}}{{15}} = 10\).

Suy ra \(x = 6.10 = 60;y = 5.10 = 50;z = 4.10 = 40\).

Vậy trại chăn nuôi gồm \(60\) con gà, \(50\) con vịt, \(40\) con heo.

Do đó, trại chăn nuôi có \(40\) con heo.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đc) Sd) Đ

Gọi \(x,y,z\) lần lượt là số mớ rau bác Cường mua gồm rau muống, rau cải và rau đay.

Điều kiện của \(x,y,z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 39.\)

Phương trình biểu diễn tổng số rau bác Cường mua là \(x + y + z = 39\).

Số tiền bác Cường mua mỗi loại rau là như nhau nên ta có tỉ lệ thức \(6x = 8y = 4z\) hay

\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{8}}} = \frac{z}{{\frac{1}{4}}}.\)

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{8}}} = \frac{z}{{\frac{1}{4}}} = \frac{{x + y + z}}{{\frac{1}{6} + \frac{1}{8} + \frac{1}{4}}} = \frac{{39}}{{\frac{{13}}{{24}}}} = 72\).

Suy ra \(x = \frac{1}{6}.72 = 12;y = \frac{1}{8}.72 = 9;z = \frac{1}{4}.72 = 18\).

Do đó, bác Cường mua số mớ rau muống, rau cải, rau đay lần lượt là \(12\) mớ, \(9\) mớ và \(18\) mớ.

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đ c) Đd) Đ

Cho tam giác   Δ A B C   và   M   là một điểm nằm trong tam giác. Gọi   I   là giao điểm của đường thẳng   B M   và cạnh   A C  .  a)   M A < M I + I A .    b)   M A + M B < I A + I B .    c)   I A + I B < C A + C B .    d)   M A + M B < C A + C B . (ảnh 1)

Xét

\(\Delta AMI\), theo bất đẳng thức tam giác, ta có: \(MA < MI + IA\).

Từ \(MA < MI + IA\), cộng hai vế với \(MB\), ta có:

\(MA + MB < MI + IA + MB\) hay \(MA + MB < IB + IA\).

Xét \(\Delta IBC\), theo bất đẳng thức tam giác, ta có: \(IB < BC + CI.\)

Do đó, \(IB + IA < CA + CB\).

Ta có: \(MA + MB < IB + IA\) và \(IB + IA < CA + CB\) suy ra \(MA + MB < CA + CB.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP