Biểu thức biểu thị quãng đường Dung đi được trong \(x\) giờ với vận tốc \(40{\rm{ km/h}}\) là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Biểu thức biểu thị quãng đường Dung đi được trong \(x\) giờ với vận tốc \(40{\rm{ km/h}}\) là \(40.x{\rm{ }}\left( {{\rm{km/h}}} \right).\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đb) Đc) Sd) Đ
Gọi \(x,y,z\) lần lượt là số mớ rau bác Cường mua gồm rau muống, rau cải và rau đay.
Điều kiện của \(x,y,z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 39.\)
Phương trình biểu diễn tổng số rau bác Cường mua là \(x + y + z = 39\).
Số tiền bác Cường mua mỗi loại rau là như nhau nên ta có tỉ lệ thức \(6x = 8y = 4z\) hay
\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{8}}} = \frac{z}{{\frac{1}{4}}}.\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{8}}} = \frac{z}{{\frac{1}{4}}} = \frac{{x + y + z}}{{\frac{1}{6} + \frac{1}{8} + \frac{1}{4}}} = \frac{{39}}{{\frac{{13}}{{24}}}} = 72\).
Suy ra \(x = \frac{1}{6}.72 = 12;y = \frac{1}{8}.72 = 9;z = \frac{1}{4}.72 = 18\).
Do đó, bác Cường mua số mớ rau muống, rau cải, rau đay lần lượt là \(12\) mớ, \(9\) mớ và \(18\) mớ.
Lời giải
Đáp án đúng là: D
Ta có \(G\) là giao của hai trung tuyến \(BM\) và \(CN\) nên \(G\) là trọng tâm của tam giác \(ABC\).
Do đó, \(GN = \frac{{GC}}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.