Câu hỏi:

30/06/2025 49 Lưu

Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn

Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Cửa hàng \(A\) bán được \(65\) chiếc bếp hồng ngoại trong một tháng gồm ba loại. Bếp hồng ngại Sunhouse giá \(10\) triệu đồng một chiếc, bếp hồng ngoại Hafele giá \(20\) triệu đồng một chiếc, bếp hồng ngoại Nagakawa giá \(12\) triệu đồng một chiếc. Biết rằng số tiền bán mỗi loại bếp hồng ngoại là như nhau. Gọi \(a,b,c\) lần lượt là số bếp hồng ngoại mà cửa hàng \(A\) bán được trong một tháng gồm bếp Sunhouse, bếp Hafele, bếp Nagakawa.

a) Điều kiện của \(a,b,c\) là \(a,b,c \in {\mathbb{N}^*}\) và \(a,b,c < 65.\)

b) Phương trình biểu diễn số bếp hồng ngoại mà cửa hàng \(A\) bán được trong một tháng là

\(abc = 65\).

c) Vì số tiền cửa hàng \(A\) bán mỗi loại bếp là như nhau nên ta có tỉ lệ thức \(\frac{a}{{10}} = \frac{b}{{20}} = \frac{c}{{12}}\).

d) Số bếp Sunhouse bán được gấp hai lần số bếp Hafele.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đb) Sc) Sd) Đ

Gọi \(a,b,c\) lần lượt là số bếp hồng ngoại mà cửa hàng \(A\) bán được trong một tháng gồm bếp Sunhouse, bếp Hafele, bếp Nagakawa.

Điều kiện của \(a,b,c\) là \(a,b,c \in {\mathbb{N}^*}\) và \(a,b,c < 65.\)

Phương trình biểu diễn số bếp hồng ngoại mà cửa hàng \(A\) bán được trong một tháng là \(a + b + c = 65.\)

Vì số tiền cửa hàng \(A\) bán mỗi loại bếp là như nhau nên ta có tỉ lệ thức \(10x = 20y = 12z\) hay \(\frac{a}{{\frac{1}{{10}}}} = \frac{b}{{\frac{1}{{20}}}} = \frac{c}{{\frac{1}{{12}}}}\).

Theo tính chất của dãy tỉ số bằng nhau nên ta có:

\(\frac{a}{{\frac{1}{{10}}}} = \frac{b}{{\frac{1}{{20}}}} = \frac{c}{{\frac{1}{{12}}}} = \frac{{a + b + c}}{{\frac{1}{{10}} + \frac{1}{{20}} + \frac{1}{{12}}}} = \frac{{65}}{{\frac{{13}}{{60}}}} = 300\).

Suy ra \(x = \frac{1}{{10}}.300 = 30;y = \frac{1}{{20}}.300 = 15;z = \frac{1}{{12}}.300 = 20\).

Do đó, cửa hàng \(A\) bán được số bếp hồng ngoại lần lượt là: \(30\) chiếc bếp Sunhouse, \(15\) chiếc bếp Hafele, \(20\) chiếc bếp Nagakawa.

Vậy số bếp Sunhouse bán đươc gấp hai lần số bếp Hafele.

Câu hỏi cùng đoạn

Câu 2:

Cho \(\frac{x}{3} = \frac{y}{6}\) và \(4x - y = 42\). Tính giá trị của \(A = 2x + 3y.\)

Trả lời:

Xem lời giải

verified Lời giải của GV VietJack

Hướng dẫn giải

Đáp án: \(210\)

Ta có \(\frac{x}{3} = \frac{y}{6}\) suy ra \(\frac{{4x}}{{12}} = \frac{y}{6}\)

Áp dụng dãy tỉ số bằng nhau, ta có:

\(\frac{{4x}}{{12}} = \frac{y}{6} = \frac{{4x - y}}{{12 - 6}} = \frac{{42}}{6} = 7.\)

Suy ra \(\frac{{4x}}{{12}} = 7\) nên \(x = 21\) và \(\frac{y}{6} = 7\) nên \(y = 42\).

Do đó, \(A = 2x + 3y = 2.21 + 3.42 = 210.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi chiều dài của ba cuộn vải loại \(I,\) loại \(II,\) loại \(III\) lần lượt là \(a,b,c{\rm{ }}\left( {\rm{m}} \right)\) với \(\left( {0 < a,b,c < 168} \right)\).

Sau một ngày, cửa hàng bán được số vải của các cuộn là

Cuộn vải loại \(I\) bán được: \(a - \frac{2}{3}a = \frac{1}{3}a{\rm{ }}\left( {\rm{m}} \right)\).

Cuộn vải loại \(II\) bán được: \(b - \frac{1}{3}b = \frac{2}{3}b{\rm{ }}\left( {\rm{m}} \right)\).

Cuộn vải loại \(III\) bán được: \(c - \frac{3}{5}c = \frac{2}{5}c{\rm{ }}\left( {\rm{m}} \right)\).

Do giá tiền \(1{\rm{ m}}\) vải của các cuộn bằng nhau nên số mét vải bán được của các cuộn tỉ lệ với số tiền bán được, mà số tiền bán được của các cuộn tỉ lệ với \(2:3:2\). Do đó, số vải bán được của các cuộn tỉ lệ với \(2:3:2\).

Ta có: \(\frac{{\frac{1}{3}a}}{2} = \frac{{\frac{2}{3}b}}{3} = \frac{{\frac{2}{5}c}}{2}\) suy ra \(\frac{a}{6} = \frac{{2b}}{9} = \frac{{2c}}{{10}}\) suy ra \(\frac{a}{6} = \frac{b}{{4,5}} = \frac{c}{5}\).

Mà tổng chiều dài của ba cuộn vải là \(186{\rm{ m}}\) nên \(a + b + c = 186{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{6} = \frac{b}{{4,5}} = \frac{c}{5} = \frac{{a + b + c}}{{6 + 4,5 + 5}} = \frac{{186}}{{15,5}} = 12\).

Suy ra \(\frac{a}{6} = 12\) nên \(a = 72{\rm{ m}}{\rm{.}}\)

\(\frac{b}{{4,5}} = 12\) nên \(b = 54{\rm{ m}}\).

\(\frac{c}{5} = 12\) nên \(c = 60{\rm{ m}}{\rm{.}}\)

Vậy chiều dài của ba cuộn vải loại \(I,\) loại \(II,\) loại \(III\) lần lượt là \(72{\rm{ m, 54 m, 60 m}}{\rm{.}}\)

Lời giải

Hướng dẫn giải

Đáp án: \(14\)

Gọi kích thước chiều dài, chiều rộng và chiều cao của hình hộp chữ nhật lần lượt là \(a,b,c\) \(\left( {a,b,c > 0;{\rm{m}}} \right)\).

Theo đề, ta có: \(a:b:c = 5:6:7\) hay \(\frac{a}{5} = \frac{b}{6} = \frac{c}{7}\).

Thể tích hình hộp chữ nhật là \(1680{\rm{ }}{{\rm{m}}^3}\) nên \(abc = 1680{\rm{ }}\left( {{{\rm{m}}^3}} \right)\)

Đặt \(\frac{a}{5} = \frac{b}{6} = \frac{c}{7} = k\) suy ra \(a = 5k;b = 6k;c = 7k\).

Khi đó ta có: \(abc = 5k.6k.7k = 1680\) hay \(210{k^3} = 1680\) suy ra \({k^3} = 8 = {2^3}\).

Do đó, \(k = 2.\)

Vậy với \(k = 2\) thì chiều cao của hình hộp chữ nhật là \(2.7 = 14{\rm{ }}\left( {\rm{m}} \right)\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP