Cho hai đa thức: \(A\left( x \right) = 2{x^4} + 3{x^2} - x + 3 - {x^2} - {x^4} - 6{x^3}\);
\(B\left( x \right) = 10{x^3} + 3 - {x^4} - 4{x^3} + 4x - 2{x^2}\).
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Xác định bậc và hệ số cao nhất của đa thức \(A\left( x \right)\).
c) So sánh \(A\left( { - 1} \right)\) và \(B\left( 1 \right)\).
d) Tìm đa thức \(M\left( x \right)\) sao cho \(A\left( x \right) = M\left( x \right) - B\left( x \right)\). Tìm nghiệm của đa thức \(M\left( x \right)\).
Cho hai đa thức: \(A\left( x \right) = 2{x^4} + 3{x^2} - x + 3 - {x^2} - {x^4} - 6{x^3}\);
\(B\left( x \right) = 10{x^3} + 3 - {x^4} - 4{x^3} + 4x - 2{x^2}\).
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Xác định bậc và hệ số cao nhất của đa thức \(A\left( x \right)\).
c) So sánh \(A\left( { - 1} \right)\) và \(B\left( 1 \right)\).
d) Tìm đa thức \(M\left( x \right)\) sao cho \(A\left( x \right) = M\left( x \right) - B\left( x \right)\). Tìm nghiệm của đa thức \(M\left( x \right)\).
Quảng cáo
Trả lời:

a) \(A\left( x \right) = 2{x^4} + 3{x^2} - x + 3 - {x^2} - {x^4} - 6{x^3}\)
\( = \left( {2{x^4} - {x^4}} \right) - 6{x^3} + \left( {3{x^2} - {x^2}} \right) - x + 3\)
\( = {x^4} - 6{x^3} + 2{x^2} - x + 3\).
\(B\left( x \right) = 10{x^3} + 3 - {x^4} - 4{x^3} + 4x - 2{x^2}\)
\( = - {x^4} + \left( {10{x^3} - 4{x^3}} \right) - 2{x^2} + 4x + 3\)
\( = - {x^4} + 6{x^3} - 2{x^2} + 4x + 3\).
b) Đa thức \(A\left( x \right)\) có bậc là 4, hệ số cao nhất là \(1\).
c) Ta có \(A\left( { - 1} \right) = {\left( { - 1} \right)^4} - 6.{\left( { - 1} \right)^3} + 2.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 3\)
\( = 1 + 6 + 2 + 1 + 3 = 13\)
\(B\left( 1 \right) = - {1^4} + {6.1^3} - {2.1^2} + 4.1 + 3\)
\( = - 1 + 6 - 2 + 4 + 3 = 10\)
Do \(13 > 10\) nên \(A\left( { - 1} \right) > B\left( 1 \right)\).
d) Ta có \(A\left( x \right) = M\left( x \right) - B\left( x \right)\)
Suy ra \(M\left( x \right) = A\left( x \right) + B\left( x \right)\)
\(M\left( x \right) = \left( {{x^4} - 6{x^3} + 2{x^2} - x + 3} \right) + \left( { - {x^4} + 6{x^3} - 2{x^2} + 4x + 3} \right)\)
\[ = {x^4} - 6{x^3} + 2{x^2} - x + 3 - {x^4} + 6{x^3} - 2{x^2} + 4x + 3\]
\[ = \left( {{x^4} - {x^4}} \right) + \left( { - 6{x^3} + 6{x^3}} \right) + \left( {2{x^2} - 2{x^2}} \right) + \left( { - x + 4x} \right) + \left( {3 + 3} \right)\]
\[ = 3x + 6.\]
Để tìm nghiệm của đa thức \(M\left( x \right)\), ta cho \(M\left( x \right) = 0\)
Do đó \(3x + 6 = 0\), suy ra \(x = - 2\).
Vậ y \(x = - 2\) là nghiệm của đa thức \(M\left( x \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
5.1.

Trong tam giác \(ABC\) có \(\widehat {IBC} + \widehat {ICB} = 180^\circ - 120^\circ = 60^\circ \).
Suy ra \(2\widehat {IBC} + 2\widehat {ICB} = 2.60^\circ \).
Mà \(\widehat {ABC} = 2\widehat {IBC}\) và \(\widehat {ACB} = 2\widehat {ICB}\).
Suy ra \(\widehat {ABC} + \widehat {ACB} = 120^\circ \), do đó \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 60^\circ \).
5.2.

a) Xét \(\Delta MAC\) và \(\Delta MBD\) có:
\(MA = MB\) (do \(M\) là trung điểm của \(AB\));
\(\widehat {AMC} = \widehat {BMD}\) (đối đỉnh);
\(MC = MD\) (giả thiết)
Do đó \(\Delta MAC = \Delta MBD\,\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right)\).
b) Do \(\Delta MAC = \Delta MBD\) (câu a) nên \(AC = BD\) (hai
cạnh tương ứng).
Xét \(\Delta BCD\) có: \[BD + BC > CD\] (bất đẳng thức tam
giác)
Do đó \[AC + BC > CD\]
Mà \(CD = 2CM\) (do \(MD = MC\) nên \(M\) là trung điểm của \(CD\)).
Vậy \[AC + BC > 2CM\].
c) Xét \(\Delta ACD\) có đường trung tuyến \(AM\) và \(AK = \frac{2}{3}AM\) nên \(K\) là trọng tâm của \(\Delta ACD\)
Do đó \(CK\) là đường trung tuyến nên \(N\) là trung điểm của \(AD\).
Xét \(\Delta ABD\) có \(DM,BN\) là hai đường trung tuyến và \(DM,BN\) cắt nhau tại \(I\) nên \(I\) là trọng tâm của \(\Delta ABD\).
Do đó \(DI = \frac{2}{3}DM\)
Mà \(DM = \frac{1}{2}CD\) nên \(DI = \frac{2}{3}.\frac{1}{2}CD = \frac{1}{3}CD\) hay \(CD = 3DI\).
Lời giải
a) Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên quả bóng được rút ra là:
\(M = \left\{ {1;2;3;4;5;6;7} \right\}\).
Do đó, có \(7\) kết quả có thể xảy ra.
b) Kết quả thuận lợi của biến cố: “Rút được thẻ ghi số là số chẵn” là: \(2;4;6\).
Xác suất của biến cố \(A\) là \(\frac{3}{7}\).
c) Kết quả thuận lợi của biến cố: “Rút được thẻ ghi số là số chia 5 dư 2” là \(2;7\).
Xác suất của biến cố \(B\) là \(\frac{2}{7}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.