Cho hai đa thức: \(A\left( x \right) = 2{x^4} + 3{x^2} - x + 3 - {x^2} - {x^4} - 6{x^3}\);
\(B\left( x \right) = 10{x^3} + 3 - {x^4} - 4{x^3} + 4x - 2{x^2}\).
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Xác định bậc và hệ số cao nhất của đa thức \(A\left( x \right)\).
c) So sánh \(A\left( { - 1} \right)\) và \(B\left( 1 \right)\).
d) Tìm đa thức \(M\left( x \right)\) sao cho \(A\left( x \right) = M\left( x \right) - B\left( x \right)\). Tìm nghiệm của đa thức \(M\left( x \right)\).
Cho hai đa thức: \(A\left( x \right) = 2{x^4} + 3{x^2} - x + 3 - {x^2} - {x^4} - 6{x^3}\);
\(B\left( x \right) = 10{x^3} + 3 - {x^4} - 4{x^3} + 4x - 2{x^2}\).
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Xác định bậc và hệ số cao nhất của đa thức \(A\left( x \right)\).
c) So sánh \(A\left( { - 1} \right)\) và \(B\left( 1 \right)\).
d) Tìm đa thức \(M\left( x \right)\) sao cho \(A\left( x \right) = M\left( x \right) - B\left( x \right)\). Tìm nghiệm của đa thức \(M\left( x \right)\).
Quảng cáo
Trả lời:
a) \(A\left( x \right) = 2{x^4} + 3{x^2} - x + 3 - {x^2} - {x^4} - 6{x^3}\)
\( = \left( {2{x^4} - {x^4}} \right) - 6{x^3} + \left( {3{x^2} - {x^2}} \right) - x + 3\)
\( = {x^4} - 6{x^3} + 2{x^2} - x + 3\).
\(B\left( x \right) = 10{x^3} + 3 - {x^4} - 4{x^3} + 4x - 2{x^2}\)
\( = - {x^4} + \left( {10{x^3} - 4{x^3}} \right) - 2{x^2} + 4x + 3\)
\( = - {x^4} + 6{x^3} - 2{x^2} + 4x + 3\).
b) Đa thức \(A\left( x \right)\) có bậc là 4, hệ số cao nhất là \(1\).
c) Ta có \(A\left( { - 1} \right) = {\left( { - 1} \right)^4} - 6.{\left( { - 1} \right)^3} + 2.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 3\)
\( = 1 + 6 + 2 + 1 + 3 = 13\)
\(B\left( 1 \right) = - {1^4} + {6.1^3} - {2.1^2} + 4.1 + 3\)
\( = - 1 + 6 - 2 + 4 + 3 = 10\)
Do \(13 > 10\) nên \(A\left( { - 1} \right) > B\left( 1 \right)\).
d) Ta có \(A\left( x \right) = M\left( x \right) - B\left( x \right)\)
Suy ra \(M\left( x \right) = A\left( x \right) + B\left( x \right)\)
\(M\left( x \right) = \left( {{x^4} - 6{x^3} + 2{x^2} - x + 3} \right) + \left( { - {x^4} + 6{x^3} - 2{x^2} + 4x + 3} \right)\)
\[ = {x^4} - 6{x^3} + 2{x^2} - x + 3 - {x^4} + 6{x^3} - 2{x^2} + 4x + 3\]
\[ = \left( {{x^4} - {x^4}} \right) + \left( { - 6{x^3} + 6{x^3}} \right) + \left( {2{x^2} - 2{x^2}} \right) + \left( { - x + 4x} \right) + \left( {3 + 3} \right)\]
\[ = 3x + 6.\]
Để tìm nghiệm của đa thức \(M\left( x \right)\), ta cho \(M\left( x \right) = 0\)
Do đó \(3x + 6 = 0\), suy ra \(x = - 2\).
Vậ y \(x = - 2\) là nghiệm của đa thức \(M\left( x \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
5.1.

Trong tam giác \(ABC\) có \(\widehat {IBC} + \widehat {ICB} = 180^\circ - 120^\circ = 60^\circ \).
Suy ra \(2\widehat {IBC} + 2\widehat {ICB} = 2.60^\circ \).
Mà \(\widehat {ABC} = 2\widehat {IBC}\) và \(\widehat {ACB} = 2\widehat {ICB}\).
Suy ra \(\widehat {ABC} + \widehat {ACB} = 120^\circ \), do đó \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 60^\circ \).
5.2.

a) Xét \(\Delta MAC\) và \(\Delta MBD\) có:
\(MA = MB\) (do \(M\) là trung điểm của \(AB\));
\(\widehat {AMC} = \widehat {BMD}\) (đối đỉnh);
\(MC = MD\) (giả thiết)
Do đó \(\Delta MAC = \Delta MBD\,\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right)\).
b) Do \(\Delta MAC = \Delta MBD\) (câu a) nên \(AC = BD\) (hai
cạnh tương ứng).
Xét \(\Delta BCD\) có: \[BD + BC > CD\] (bất đẳng thức tam
giác)
Do đó \[AC + BC > CD\]
Mà \(CD = 2CM\) (do \(MD = MC\) nên \(M\) là trung điểm của \(CD\)).
Vậy \[AC + BC > 2CM\].
c) Xét \(\Delta ACD\) có đường trung tuyến \(AM\) và \(AK = \frac{2}{3}AM\) nên \(K\) là trọng tâm của \(\Delta ACD\)
Do đó \(CK\) là đường trung tuyến nên \(N\) là trung điểm của \(AD\).
Xét \(\Delta ABD\) có \(DM,BN\) là hai đường trung tuyến và \(DM,BN\) cắt nhau tại \(I\) nên \(I\) là trọng tâm của \(\Delta ABD\).
Do đó \(DI = \frac{2}{3}DM\)
Mà \(DM = \frac{1}{2}CD\) nên \(DI = \frac{2}{3}.\frac{1}{2}CD = \frac{1}{3}CD\) hay \(CD = 3DI\).
Lời giải
a) Biểu đồ đoạn thẳng biểu diễn bảng số liệu đã cho như sau:
b) Trong khoảng thời gian từ \(2015 - 2020\), tỉ lệ lạm phát ở Việt Nam cao nhất là năm \(2018\) và thấp nhất vào năm \(2015\) với các tỉ lệ tương ứng là \(3,54\) và \(0,63\).
c) Trong 6 năm, có 3 năm mà tỉ lệ lạm phát ở Việt Nam thấp hơn \(3\% \), đó là năm \(2015;2016;2019\).
Vậy xác suất để năm được chọn có tỉ lệ lạm phát ở Việt Nam thấp hơn \(3\% \) là \(\frac{3}{6} = \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.