Câu hỏi:

30/06/2025 10

Một người bấm số để gọi điện thoại nhưng quên hai số cuối và chỉ nhớ rằng hai chữ số đó khác nhau. Tính xác suất của biến cố “Người đó bấm thử 1 lần được đúng số điện thoại cần gọi”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có, hai số cuối của điện thoại là hai chữ số khác nhau được lập từ bộ số \(\left\{ {0;1;2;3;4;5;6;7;8;9} \right\}.\)

Vậy thì số thứ nhất trong hai số cuối đó có 10 cách chọn, số còn lại có 9 cách chọn do hai số đó là hai số khác nhau.

Vì vậy, số kết quả có thể xảy ra là: \(9.10 = 90\) (kết quả).

Vì chỉ có 1 số điện thoại cần gọi đúng nên xác suất của biến cố “Người đó bấm thử một lần được đúng số điện thoại cần gọi” là: \(\frac{1}{{90}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Biểu đồ đoạn thẳng biểu diễn bảng số liệu đã cho như sau:

Media VietJack

b) Trong khoảng thời gian từ \(2015 - 2020\), tỉ lệ lạm phát ở Việt Nam cao nhất là năm \(2018\) và thấp nhất vào năm \(2015\) với các tỉ lệ tương ứng là \(3,54\)\(0,63\).

c) Trong 6 năm, có 3 năm mà tỉ lệ lạm phát ở Việt Nam thấp hơn \(3\% \), đó là năm \(2015;2016;2019\).

Vậy xác suất để năm được chọn có tỉ lệ lạm phát ở Việt Nam thấp hơn \(3\% \)\(\frac{3}{6} = \frac{1}{2}\).

Lời giải

a) Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên quả bóng được rút ra là:

        \(M = \left\{ {1;2;3;4;5;6;7} \right\}\).

 Do đó, có \(7\) kết quả có thể xảy ra.

b) Kết quả thuận lợi của biến cố: “Rút được thẻ ghi số là số chẵn” là: \(2;4;6\).

Xác suất của biến cố \(A\)\(\frac{3}{7}\).

c) Kết quả thuận lợi của biến cố: “Rút được thẻ ghi số là số chia 5 dư 2” là \(2;7\).

Xác suất của biến cố \(B\)\(\frac{2}{7}\).