1.1. Tìm \(x,\)biết:
a) \(\frac{x}{3} = \frac{{ - 10}}{6};\) b) \(\frac{{2 - x}}{4} = \frac{{x - 3}}{{ - 5}}\).
1.2. Ba đội y tế tiêm ngừa vaccine Covid – 19 tại ba trường THCS trong quận có cùng số lượng học sinh đăng kí tiêm chủng như nhau. Đội thứ nhất tiêm xong trong 5 ngày, đội thứ hai tiêm xong trong 4 ngày và đội thứ ba tiêm xong trong 6 ngày. Hỏi mỗi đội có bao nhiêu cán bộ y tế, biết cả ba đội có tất cả 37 cán bộ? (Năng suất làm việc của các cán bộ y tế là như nhau)
1.1. Tìm \(x,\)biết:
a) \(\frac{x}{3} = \frac{{ - 10}}{6};\) b) \(\frac{{2 - x}}{4} = \frac{{x - 3}}{{ - 5}}\).
1.2. Ba đội y tế tiêm ngừa vaccine Covid – 19 tại ba trường THCS trong quận có cùng số lượng học sinh đăng kí tiêm chủng như nhau. Đội thứ nhất tiêm xong trong 5 ngày, đội thứ hai tiêm xong trong 4 ngày và đội thứ ba tiêm xong trong 6 ngày. Hỏi mỗi đội có bao nhiêu cán bộ y tế, biết cả ba đội có tất cả 37 cán bộ? (Năng suất làm việc của các cán bộ y tế là như nhau)
Quảng cáo
Trả lời:
1.1.
a) \(\frac{x}{3} = \frac{{ - 10}}{6}\) \(6x = - 10.3\) \(6x = - 30\) \(x = - 30:6\) \(x = - 5\) Vậy \(x = - 5\). |
b) \(\frac{{2 - x}}{4} = \frac{{x - 3}}{{ - 5}}\) \( - 5\left( {2 - x} \right) = 4\left( {x - 3} \right)\) \( - 10 + 5x = 4x - 12\) \(x = - 12 + 10\) \(x = - 2\) Vậy \(x = - 2\). |
1.2. Gọi số cán bộ y tế ở đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là \(x,y,z\) (người) với \(x,y,z \in {\mathbb{N}^*}.\)
Vì cả ba đội y tế có tất cả 37 cán bộ y tế nên \(x + y + z = 37\).
Ta có: \(x\) tiêm xong trong 5 ngày, \(y\) tiêm xong trong 4 ngày, \(z\) tiêm xong trong 6 ngày.
Vì số cán bộ y tế và thời gian là hai đại lượng tỉ lệ nghịch nên ta có: \(5x = 4y = 6z\) hay \(\frac{x}{{12}} = \frac{y}{{15}} = \frac{z}{{10}}.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{{12}} = \frac{y}{{15}} = \frac{z}{{10}} = \frac{{x + y + z}}{{12 + 15 + 10}} = \frac{{37}}{{37}} = 1\).
Do đó, ta có: \(\frac{x}{{12}} = 1\) nên \(x = 12,\) \(\frac{y}{{15}} = 1\) nên \(y = 15\); \(\frac{z}{{10}} = 1\) nên \(z = 10\).
Vậy số cán bộ y tế ở đội thứ nhất, thứ hai, thứ ba lần lượt là 12, 15, 10 người.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nhận thấy, số có tổng các chữ số bằng 9 là các số chia hết cho 9.
Do đó, các kết quả thuận lợi cho biến cố này là: \[9;18;27;36;45;54;63;72;81;90\].
Suy ra có 10 kết quả thuận lợi.
Vậy xác suất của biến cố “Số ghi trên vé của Nam là số có tổng các chữ số chia hết cho \[9\]” là: \[\frac{{10}}{{100}} = \frac{1}{{10}}\].
Lời giải
2.1. Thay \(x = - 1;y = 1;z = - 1\) vào biểu thức \(H = xy - xz + yz\), ta được:
\(H = \left( { - 1} \right).1 - \left( { - 1} \right).\left( { - 1} \right) + 1.\left( { - 1} \right) = - 1 - 1 - 1 = - 3\).
Vậy giá trị của biểu thức \(H = - 3\).
2.2. a) \(A\left( x \right) = \frac{1}{4}{x^3} + \frac{{11}}{3}{x^2} - 6x - \frac{2}{3}{x^2} + \frac{7}{4}{x^3} + 2x + 3\)
\( = \left( {\frac{1}{4} + \frac{7}{4}} \right){x^3} + \left( {\frac{{11}}{3} - \frac{2}{3}} \right){x^2} + \left( { - 6 + 2} \right)x + 3\)
\( = 2{x^3} + 3{x^2} - 4x + 3\).
b) Đa thức \(A\left( x \right)\) có bậc là 3 và hệ số cao nhất là \(2\).
c) Ta có \(A\left( { - 1} \right) = 2.{\left( { - 1} \right)^3} + 3.{\left( { - 1} \right)^2} - 4.\left( { - 1} \right) + 3 = 8\).
Theo bài, \({2^n} = A\left( { - 1} \right)\) nên \({2^n} = 8 = {2^3}\)
Suy ra \(n = 3\).
Vậy \(n = 3\).
d) \(B\left( x \right) = \left( {{x^2} - x + 1} \right)\left( {2x + 3} \right)\)
\( = 2{x^3} + 3{x^2} - 2{x^2} - 3x + 2x + 3\)
\( = 2{x^3} + {x^2} - x + 3\)
Ta có \(C\left( x \right) = A\left( x \right) - B\left( x \right)\)
\( = 2{x^3} + 3{x^2} - 4x + 3 - \left( {2{x^3} + {x^2} - x + 3} \right)\)
\( = 2{x^3} + 3{x^2} - 4x + 3 - 2{x^3} - {x^2} + x - 3\)
\( = 2{x^2} - 3x\).
Để tìm nghiệm của đa thức \(C\left( x \right)\), ta cho \(C\left( x \right) = 0\)
Do đó \(2{x^2} - 3x = 0\) hay \(x\left( {2x - 3} \right) = 0\)
Suy ra \(x = 0\) hoặc \(x = \frac{3}{2}\).
Vậy nghiệm của đa thức \(C\left( x \right)\) là \(x \in \left\{ {0;\frac{3}{2}} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.