Câu hỏi:

30/06/2025 17

(2,5 điểm)

3.1. Để làm một công việc trong 8 giờ cần 30 công nhân. Nếu có 40 công nhân thì công việc đó hoàn thành trong mấy giờ? Biết rằng năng suất làm việc của các công nhân là như nhau.

3.2. Ba bạn Long, Khang, My tham gia quyên góp gạo cho người dân vùng cao, biết tổng số gạo ba bạn quyên góp là \(72{\rm{ kg}}\). Số gạo ba bạn Long, Khang, My quyên góp lần lượt tỉ lệ thuận với \(5;6;\)\(7.\) Hỏi số gạo mỗi bạn quyên góp là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

3.1. Gọi thời gian để hoàn thành công việc của \(40\) công nhân là \(t\) giờ \(\left( {t > 0} \right)\).

Vì khối lượng công việc là không đổi nên số công nhân và thời gian để hoàn thành công việc đó là hai đại lượng tỉ lệ nghịch, ta có: \(30.8 = 40t\) suy ra \(t = \frac{{30.8}}{{40}} = 6\).

Vậy thời gian để hoàn thành công việc của 40 công nhân là 6 giờ.

3.2. Gọi số gạo mỗi bạn Long, Khang, My quyên góp lần lượt là \(x,y,z{\rm{ }}\left( {x,y,z > 0;{\rm{ kg}}} \right)\).

Theo đề, ta có tổng số gạo ba bạn quyên góp là \(72{\rm{ kg}}\) nên \(x + y + z = 72\) (1)

Vì số gạo ba bạn Long, Khang, My quyên góp lần lượt tỉ lệ thuận với \(5;6;7\) nên \(\frac{x}{5} = \frac{y}{6} = \frac{z}{7}\) (2)

Từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{5} = \frac{y}{6} = \frac{z}{7} = \frac{{x + y + z}}{{5 + 6 + 7}} = \frac{{72}}{{18}} = 4\)

Suy ra \(x = 20;y = 24;z = 28\) (thỏa mãn)

Vậy số gạo ba bạn Long, Khang, My góp lần lượt là 20 kg, 24 kg, 28 kg.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \(\frac{x}{3} = \frac{{2,5}}{{1,5}}\) suy ra \(1,5x = 2,5.3\), do đó \(x = \frac{{2,5.3}}{{1,5}} = 5\).

Vậy \(x = 5\).

b) \(\frac{x}{{15}} = \frac{y}{7}\) và \(y - x = 16\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{15}} = \frac{y}{7} = \frac{{y - x}}{{7 - 15}} = \frac{{16}}{{ - 8}} = - 2\).

Suy ra \(x = 15.\left( { - 2} \right) = - 30\) và \(y = 7.\left( { - 2} \right) = - 14\).

Vậy \(x = - 30\) và \(y = - 14\).

c) \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\) và \(x - 2y + 3z = 38.\)

Ta có \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\) hay \(\frac{x}{2} = \frac{{2y}}{6} = \frac{{3z}}{{15}}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2} = \frac{{2y}}{6} = \frac{{3z}}{{15}} = \frac{{x - 2y + 3z}}{{2 + 6 + 15}} = \frac{{38}}{{23}}\).

Suy ra \(x = \frac{{76}}{{23}};y = \frac{{119}}{{23}};z = \frac{{190}}{{23}}\).

Lời giải

Hướng dẫn giải

a) Vì \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch và từ bảng trên có \(x = - 2\) thì \(y = - 15\).

Từ đây, ta có: \(a = xy = - 2.\left( { - 15} \right) = 30\). Suy ra \(y = \frac{{30}}{x}\).

Do đó, hệ số tỉ lệ của \(y\) đối với \(x\) là \(30\).

b) Ta có \(a = 30\) nên ta được bảng sau:

(1,5 điểm) Cho   x   và   y   là hai đại lượng tỉ lệ nghịch. Ta có bảng sau:  x    − 2    10    15    y    − 15    − 3    5    a) Xác định hệ số tỉ lệ của   y   đối với   x  .  b) Điền số thích hợp để hoàn thiện bảng trên. (ảnh 2)