(0,5 điểm) Một vật chuyển động trên bốn cạnh của một hình vuông, trên hai cạnh đầu vật chuyển động với vận tốc \(6{\rm{ m/s}}\), trên cạnh thứ ba với vận tốc \(4{\rm{ m/s}}\) và trên cạnh thứ tư với vận tốc \(2{\rm{ m/s}}\). Tính độ dài của cạnh hình vuông biết rằng tổng số thời gian vật chuyển động trên bốn cạnh là \(130\) giây.
Quảng cáo
Trả lời:
Hướng dẫn giải
Nhận thấy trên cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi \(x,y,z,t\) lần lượt là thời gian để vật chuyển động trên 4 cạnh của hình vuông.
Theo đề, ta có: \(x + y + z + t = 130\) (1)
Lại có, trên hai cạnh đầu, vật chuyển động với vận tốc \(6{\rm{ m/s}}\), trên cạnh thứ ba với bận tốc \(4{\rm{ m/s}}\) và trên cạnh thứ tư với vận tốc \(2{\rm{ m/s}}\) nên ta có: \(6x = 6y = 4z = 2t\) (= độ dài hình vuông)
Hay \(\frac{x}{2} = \frac{y}{2} = \frac{z}{3} = \frac{t}{6}\) (2)
Từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2} = \frac{y}{2} = \frac{z}{3} = \frac{t}{6} = \frac{{x + y + z + t}}{{2 + 2 + 3 + 6}} = \frac{{130}}{{13}} = 10\).
Suy ra \(x = y = 20;{\rm{ }}z = 30;{\rm{ }}t = 60\).
Do đó, độ dài cạnh hình vuông đó là: \(6.20 = 120{\rm{ m}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Toán - Văn - Anh, Toán - Anh - KHTN lớp 6 (chương trình mới) ( 126.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
4.1. Từ hình minh họa, xét tam giác \(ABC\), có \(\widehat B > \widehat C{\rm{ }}\left( {75^\circ > 35^\circ } \right)\) nên \(AC > AB\) (quan hệ giữa góc và cạnh đối diện trong tam giác).
Do đó, bạn Đào đi đến nhà bạn Lan ngắn hơn quãng đường bạn Đào đi đến nhà bạn Hồng.
Vậy các bạn nên học nhóm ở nhà bạn Lan.
4.2. a) Xét \(\Delta AMB\) và \(\Delta AMC\), có:

\(AM\) chung (gt)
\(BM = MC\) (gt)
\(AB = AC\) (\(\Delta ABC\) cân)
Do đó, \(\Delta AMB = \Delta AMC\) (c.c.c)
Suy ra \(\widehat {MAB} = \widehat {MAC}\) (hai cạnh tương ứng)
Do đó, \(AM\) là tia phân giác của \(\widehat {BAC}\).
b) Xét \(\Delta AME\) và \(\Delta AMF\), có:
\(\widehat {MEA} = \widehat {MFA} = 90^\circ \) (gt)
\(\widehat {EAM} = \widehat {FAM}\)
\(AM\) chung (gt)
Do đó, \(\Delta AME = \Delta AMF\) (ch – gn)
Suy ra \(ME = MF\) (hai cạnh tương ứng)
Từ đó, ta có: \(\Delta MEF\) cân tại \(M\).
c) Vì \(\Delta AME = \Delta AMF\) (cmt) nên \(AE = AF\) (hai cạnh tương ứng).
Mà \(AB = AC\) và ta có: \(\left\{ \begin{array}{l}AB = AE + EB\\AC = AF + FC\end{array} \right.\) suy ra \(EB = FC\).
Lại có \(EB = KB\) nên \(KB = FC\).
Xét \(\Delta BKM\) và \(\Delta CFM\), có:
\(BM = MC\) (gt)
\(\widehat {FCM} = \widehat {MBK}\) (so le trong)
\(KB = FC\) (cmt)
Do đó, \(\Delta BKM = \Delta CFM\) (c.g.c)
Suy ra \(\widehat {BMK} = \widehat {CMF}\) (hai góc tương ứng)
Mà hai góc ở vị trí đối đỉnh nên \(K,M,F\) thẳng hàng.
Lại có \(KM = MF\) (hai cạnh tương ứng)
Do đó, \(M\) là trung điểm của \(KF\).
Lời giải
Hướng dẫn giải
a) Vì \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch và từ bảng trên có \(x = - 2\) thì \(y = - 15\).
Từ đây, ta có: \(a = xy = - 2.\left( { - 15} \right) = 30\). Suy ra \(y = \frac{{30}}{x}\).
Do đó, hệ số tỉ lệ của \(y\) đối với \(x\) là \(30\).
b) Ta có \(a = 30\) nên ta được bảng sau:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.