(1,5 điểm) Tìm \(x;y;z\) trong các tỉ lệ thức sau:
a)\(\frac{{16}}{x} = \frac{x}{{25}};\)
b) \(\frac{x}{5} = \frac{y}{7}\) và \(x + y = 36;\)
c) \(x:y:z = 3:4:5\) và \(x + y - z = 144.\)
Quảng cáo
Trả lời:

Hướng dẫn giải
a) \(\frac{{16}}{x} = \frac{x}{{25}}\) nên \({x^2} = 16.25\) hay \({x^2} = 400\).
Do đó, \({x^2} = {20^2}\) hoặc \({x^2} = {\left( { - 20} \right)^2}\).
Suy ra, \(x = 20\) hoặc \(x = - 20\).
Vậy giá trị cần tìm là \(\left\{ {20; - 20} \right\}\).
b) \(\frac{x}{5} = \frac{y}{7}\) và \(x + y = 36;\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5} = \frac{y}{7} = \frac{{x + y}}{{5 + 7}} = \frac{{36}}{{12}} = 3\).
Suy ra \(x = 5.3 = 15\) và \(y = 7.3 = 21\).
Vậy \(x = 15\) và \(y = 21\).
c) \(x:y:z = 3:4:5\) và \(x + y - z = 144\)
Ta có \(x:y:z = 3:4:5\) hay \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{{144}}{2} = 72\).
Do đó, \(x = 3.72 = 216;{\rm{ }}y = 4.72 = 288;{\rm{ }}z = 5.72 = 360\).
Vậy \(x = 216,y = 288,z = 360.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Từ bảng trên, ta thấy khi \(x = 4\) thì \(y = 1,5\). Mà \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch.
Do đó, ta có hệ số tỉ lệ là: \(a = xy = 4.1,5 = 6\).
Suy ra \(x = \frac{6}{y}.\)
Vậy hệ số tỉ lệ của \(x\) theo \(y\) là \(6\).
b) Vì hệ số tỉ lệ tính được là \(6\) nên ta được:

Lời giải
Hướng dẫn giải
4.1.Theo đề và từ hình minh họa, ta có: \(BC = 75{\rm{ km, }}AC = 20{\rm{ km}}\).
Khoảng cách từ trạm phát sóng đến hòn đảo chính là độ dài đoạn \(AB\)
Do đó, áp dụng bất đẳng thức về cạnh trong tam giác \(ABC,\) ta có:
\(BC + AC > AB\) hay \(75 + 20 > AB\) nên \(AB < 95{\rm{ km}}\).
Do đó, sóng \(4G\) của trạm phát sóng tại vị trí \(A\) có thể đến đảo.
4.2. a) Xét tam giác \(\Delta ABM\) và \(\Delta DBM\), có:
\(AB = BD\) (gt)
\(BM\) chung (gt)
\(\widehat {BAM} = \widehat {MDB} = 90^\circ \) (gt)
Do đó, \(\Delta ABM = \Delta DBM\) (ch – cgv)
b) Do \(\Delta ABM = \Delta DBM\) (cmt) nên \(AM = MD\) (hai cạnh tương ứng)
Xét \(\Delta AMN\) và \(\Delta DMC\), ta có:
\(\widehat {MAN} = \widehat {MDC} = 90^\circ \) (gt)
\(AM = MD\) (cmt)
\(\widehat {AMN} = \widehat {DMC}\) (đối đỉnh)
Suy ra \(\Delta AMN = \Delta DMC\) (cgv – gn)
Do đó, \(MN = MC\) (hai cạnh tương ứng)
Suy ra \(\Delta MNC\) cân tại \(M.\)
c) Do \(\Delta MNC\) cân tại \(M\) và \(I\) là trung điểm của \(NC\) nên \(MI\) cũng là đường cao của \(\Delta MNC\)
Suy ra \(MI \bot NC\).
Xét \(\Delta AMN\) và \(\Delta DMC,\) có:
\(\widehat {AMN} = \widehat {DMC}\) (đối đỉnh)
\(AM = MD\) (cmt)
\(MN = MC\) (cmt)
Suy ra \(\Delta AMN = \Delta DMC\) (c.g.c)
Do đó, \(AN = DC\) (hai cạnh tương ứng)
Ta có: \(AB + AN = BN;{\rm{ }}BD + DC = BC\).
Mà \(AN = DC,AB = BD\). Suy ra \(BN = BC\).
Do đó, \(\Delta BNC\) cân tại \(B\).
Suy ra \(BI \bot NC\) tại \(I\).
Mà \(MI \bot NC\) tại \(I\).
Do đó, \(B,M,I\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.