Câu hỏi:

30/06/2025 27

(2,5 điểm)

3.1. Bạn Tùng mua 12 gói bim bim với giá 5 nghìn đồng một gói để khao các bạn tổ I. Bạn Huy cũng dùng số tiền như của bạn Tùng mua 6 gói bánh để khao các bạn tổ II. Tính giá tiền mỗi gói bánh mà bạn Huy mua.

3.2. Trong đợt quyên góp sách ủng hộ các bạn vùng lũ miền trung, số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt tỉ lệ với \(16;13;12.\) Tính số sách mỗi lớp quyên góp được biết rằng lớp 7A quyên góp nhiều hơn lớp 7C là \(12\) quyển.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

3.1.Gọi giá tiền một gói bạn Huy mua là \(x\) (nghìn đồng)

Vì số tiền mà bạn Tùng và Huy mua đồ là như nhau nên gói bánh, bim bim và giá tiền của nó là hai đại lượng tỉ lệ nghịch.

Do đó, ta có \(12.5 = 6x\) suy ra \(x = \frac{{12.5}}{6} = 10\) (nghìn đồng)

Vậy giá gói bánh bạn Huy mua là 10 nghìn đồng.

3.2. Gọi số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt là \(x;y;z\) (quyển).

Vì số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt tỉ lệ với \(16;13;12\) và lớp 7A quyên góp nhiều hơn lớp 7C là 12 quyển nên ta có: \(\frac{x}{{16}} = \frac{y}{{13}} = \frac{z}{{12}}\) và \(x - z = 12\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{16}} = \frac{y}{{13}} = \frac{z}{{12}} = \frac{{x - z}}{{16 - 12}} = \frac{{12}}{4} = 3\)

Suy ra \(\frac{x}{{16}} = 3\) nên \(x = 48\); \(\frac{y}{{13}} = 3\) nên \(y = 39\); \(\frac{z}{{12}} = 3\) nên \(z = 36\).

Vậy số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt là \(48\) quyển, \(39\) quyển, \(36\) quyển.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi độ dài ba cạnh của tam giác lần lượt là \(a,b,c\) và chiều cao tương ứng là \(x,y,z\).

Điều kiện: \(a,b,c,x,y,z > 0\). Tam giác có diện tích là \(S\).

Theo đề, ta có độ dài ba cạnh tỉ lệ với \(2:3:5\) nên \(\frac{a}{2} = \frac{b}{3} = \frac{c}{5}\) (1)

Có \(S = \frac{1}{2}ax = \frac{1}{2}by = \frac{1}{2}cz\) suy ra \(a = & \frac{{2S}}{x};b = \frac{{2S}}{y};c = \frac{{2S}}{z}\) nên \(\frac{a}{2} = \frac{b}{3} = \frac{c}{5} = \frac{{2S}}{{2x}} = \frac{{2S}}{{3y}} = \frac{{2S}}{{5z}}\) hay \(2x = 3y = 5z\).

Do đó, \(\frac{x}{{\frac{1}{2}}} = \frac{y}{{\frac{1}{3}}} = \frac{z}{{\frac{1}{5}}}\).

Vậy nên chiều cao tương ứng của ba cạnh trong tam giác thỏa mãn bài toán lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{1}{5}.\)

Lời giải

Hướng dẫn giải

a) \(\frac{x}{{3,2}} = \frac{{2,5}}{{7,2}}\) do đó \(x = \frac{{2,5.3,2}}{{7,2}} = \frac{{10}}{9}\).

Vậy \(x = \frac{{10}}{9}\).

b) \(\frac{x}{3} = \frac{y}{5}\) và \(x + y = - 32\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{ - 32}}{8} = - 4\).

Do đó, \(x = 3.\left( { - 4} \right) = - 12\) và \(y = 5.\left( { - 4} \right) = - 20\).

Vậy \(x = - 12\) và \(y = - 20\).

c) \(\frac{x}{4} = \frac{y}{3} = \frac{z}{2}\) và \(x + y + z = 27.\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{4} = \frac{y}{3} = \frac{z}{2} = \frac{{x + y + z}}{{4 + 3 + 2}} = \frac{{27}}{9} = 3\).

Do đó, \(x = 4.3 = 12;{\rm{ }}y = 3.3 = 9;{\rm{ }}z = 2.3 = 6\).

Vậy \(x = 12;y = 9;z = 6.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP