(2,5 điểm)
3.1. Bạn Tùng mua 12 gói bim bim với giá 5 nghìn đồng một gói để khao các bạn tổ I. Bạn Huy cũng dùng số tiền như của bạn Tùng mua 6 gói bánh để khao các bạn tổ II. Tính giá tiền mỗi gói bánh mà bạn Huy mua.
3.2. Trong đợt quyên góp sách ủng hộ các bạn vùng lũ miền trung, số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt tỉ lệ với \(16;13;12.\) Tính số sách mỗi lớp quyên góp được biết rằng lớp 7A quyên góp nhiều hơn lớp 7C là \(12\) quyển.
Quảng cáo
Trả lời:
Hướng dẫn giải
3.1.Gọi giá tiền một gói bạn Huy mua là \(x\) (nghìn đồng)
Vì số tiền mà bạn Tùng và Huy mua đồ là như nhau nên gói bánh, bim bim và giá tiền của nó là hai đại lượng tỉ lệ nghịch.
Do đó, ta có \(12.5 = 6x\) suy ra \(x = \frac{{12.5}}{6} = 10\) (nghìn đồng)
Vậy giá gói bánh bạn Huy mua là 10 nghìn đồng.
3.2. Gọi số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt là \(x;y;z\) (quyển).
Vì số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt tỉ lệ với \(16;13;12\) và lớp 7A quyên góp nhiều hơn lớp 7C là 12 quyển nên ta có: \(\frac{x}{{16}} = \frac{y}{{13}} = \frac{z}{{12}}\) và \(x - z = 12\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{16}} = \frac{y}{{13}} = \frac{z}{{12}} = \frac{{x - z}}{{16 - 12}} = \frac{{12}}{4} = 3\)
Suy ra \(\frac{x}{{16}} = 3\) nên \(x = 48\); \(\frac{y}{{13}} = 3\) nên \(y = 39\); \(\frac{z}{{12}} = 3\) nên \(z = 36\).
Vậy số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt là \(48\) quyển, \(39\) quyển, \(36\) quyển.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Toán - Văn - Anh, Toán - Anh - KHTN lớp 6 (chương trình mới) ( 126.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi độ dài ba cạnh của tam giác lần lượt là \(a,b,c\) và chiều cao tương ứng là \(x,y,z\).
Điều kiện: \(a,b,c,x,y,z > 0\). Tam giác có diện tích là \(S\).
Theo đề, ta có độ dài ba cạnh tỉ lệ với \(2:3:5\) nên \(\frac{a}{2} = \frac{b}{3} = \frac{c}{5}\) (1)
Có \(S = \frac{1}{2}ax = \frac{1}{2}by = \frac{1}{2}cz\) suy ra \(a = & \frac{{2S}}{x};b = \frac{{2S}}{y};c = \frac{{2S}}{z}\) nên \(\frac{a}{2} = \frac{b}{3} = \frac{c}{5} = \frac{{2S}}{{2x}} = \frac{{2S}}{{3y}} = \frac{{2S}}{{5z}}\) hay \(2x = 3y = 5z\).
Do đó, \(\frac{x}{{\frac{1}{2}}} = \frac{y}{{\frac{1}{3}}} = \frac{z}{{\frac{1}{5}}}\).
Vậy nên chiều cao tương ứng của ba cạnh trong tam giác thỏa mãn bài toán lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{1}{5}.\)
Lời giải
Hướng dẫn giải
a) Từ bảng ta có khi \(x = 9\) thì \(y = 10\) và \(x,y\) là hai đại lượng tỉ lệ nghịch nên ta có hệ số tỉ lệ của \(x\) và \(y\) là \(a = x.y = 9.10 = 90\) hay \(y = \frac{{90}}{x}\).
b) Ta có hệ số tỉ lệ \(a = 90\) nên ta được bảng sau:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.