(2,5 điểm) Biểu đồ biểu diễn thời gian luyện tập trong một ngày để chuẩn bị cho giải thi đấu bóng rổ của bốn bạn An, Bình, Minh, Hằng.

a) Lập bảng số liệu thống kê thời gian luyện tập của bốn học sinh trên.
b) Thời gian luyện tập của bạn nào là nhiều nhất, thời gian luyện tập của bạn nào là ít nhất?
c) Tính thời gian luyện tập trung bình của bốn bạn trong ngày (làm tròn kết quả đến hàng đơn vị).
d) Thời gian luyện tập của bạn Minh hơn bao nhiêu phần trăm so với thời gian luyện tập của bạn Hằng? (làm tròn kết quả đến hàng phần mười)
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có bảng số liệu thống kê thời gian luyện tập của bốn học sinh trên như sau:

b) Từ biểu đồ và bảng thống kê, nhận thấy thời gian bạn Bình tập luyện là nhiều nhất, thời gian bạn Hằng tập luyện là ít nhất.
c) Tổng thời gian bốn bạn luyện tập trong ngày là: \(60 + 70 + 50 + 45 = 225\) (phút)
Thời gian luyện tập trung bình của bốn bạn trong ngày là: \(225:4 \approx 56\) (phút)
d) Thời gian luyện tập của bạn Minh so với thời gian luyện tập của bạn Hằng là: \(\frac{{50}}{{45}}.100 \approx 111,1\% \).
Do đó, thời gian luyện tập của bạn Minh hơn thời gian luyện tập của bạn Hằng số phần trăm là:
\(111,1 - 100 = 11,1\% \)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải

a) Ta có \(\Delta ABC\) cân tại \(A\) và \(AH \bot BC\) tại \(H\) nên \(AH\) vừa là đường cao, vừa là đường trung tuyến của \(\Delta ABC\).
b) Ta có \(BM \bot AC{\rm{ }}\left( {M \in AC} \right)\) nên \(\Delta BMC\) vuông tại \(M\), có \(BC\) là cạnh huyền.
Do đó, \(BM < BC\) (quan hệ giữa các cạnh trong tam giác)
Xét \(\Delta BMA\) vuông tại \(M\) có \(AB\) là cạnh huyền.
Do đó, \(BM < AB\) (1)
Lại có, tam giác \(ABC\) cân tại \(A\) nên \(AB = AC\) (2)
Từ (1) và (2) suy ra \(MB < AC\).
c) Xét \(\Delta KBC\) và \(\Delta MCB\) có:
\(BC\): chung (gt)
\(\widehat {ABC} = \widehat {ACB}\) (tam giác \(ABC\) cân)
\(\widehat {BKC} = \widehat {BMC} = 90^\circ \) (gt)
Suy ra \(\Delta KBC = \Delta MCB\) (ch – gn)
Suy ra \(KB = MC\) (hai cạnh tương ứng).
Lại có: \(\left\{ \begin{array}{l}AB = AK + KB\\AC = AM + MC\end{array} \right.\). Mà \(KB = MC\) (cmt)
Suy ra \(AK = AM\).
Xét \(\Delta KAI\) và \(\Delta MAI\), có:
\(AI\) chung (gt)
\(AK = AM\) (cmt)
\(\widehat {AKI} = \widehat {AMI} = 90^\circ \) (gt)
Suy ra \(\Delta KAI = \Delta MAI\) (ch – cgv)
Suy ra \(KI = MI\) (hai cạnh tương ứng)
Xét \(\Delta KIB\) và \(\Delta MIC\) có:
\(\widehat {IKB} = \widehat {IMC} = 90^\circ \)
\(IK = IM\) (cmt)
\(KB = MC\) (cmt)
Suy ra \(\Delta KIB = \Delta MIC\) (2cgv)
Suy ra \(\widehat {KIB} = \widehat {MIC}\) (hai góc tương ứng)
Mà hai góc ở vị trí đối đỉnh.
Suy ra \(K,I,C\) thẳng hàng.
Lời giải
Hướng dẫn giải
Do mật khẩu nhà bạn Nam là số có ba chữ số và các chữ số này đều là lẻ nên các số đó được tạo thành từ bộ số \(\left\{ {1;3;5;7;9} \right\}\).
Do đó, ta có 5 cách chọn chữ số hàng trăm;
5 cách chọn chữ số hàng chục;
5 cách chọn chữ số hàng đơn vị.
Từ đó, số kết quả có thể xảy ra là: \(5.5.5 = 125\).
Mà Nam chỉ bấm 1 lần nên khả năng xảy ra của mỗi biến cố là như nhau.
Do đó, xác suất để Nam bấm 1 lần mở được cửa là: \(\frac{1}{{125}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
