Câu hỏi:

30/06/2025 31

(3,0 điểm) Cho \(\Delta ABC\) cân tại \(A\). Từ \(A\) kẻ \(AH \bot BC\) tại \(H.\) Chứng minh rằng:

a) \(AH\) là đường trung tuyến của \(\Delta ABC\).

b) Kẻ \(BM \bot AC{\rm{ }}\left( {M \in AC} \right)\). Hãy so sánh \(BM\) với \(BC\) và \(BM\) với \(AC.\)

c) Kẻ \(CK \bot AB{\rm{ }}\left( {K \in AB} \right),\) \(AH\) cắt \(BM\) tại \(I\). Chứng minh \(K,I,C\) thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

(3,0 điểm) Cho   Δ A B C   cân tại   A  . Từ   A   kẻ   A H ⊥ B C   tại   H .   Chứng minh rằng:  a)   A H   là đường trung tuyến của   Δ A B C  .  b) Kẻ   B M ⊥ A C ( M ∈ A C )  . Hãy so sánh   B M   với   B C   và   B M   với   A C .    c) Kẻ   C K ⊥ A B ( K ∈ A B ) ,     A H   cắt   B M   tại   I  . Chứng minh   K , I , C   thẳng hàng. (ảnh 1)

a) Ta có \(\Delta ABC\) cân tại \(A\) và \(AH \bot BC\) tại \(H\) nên \(AH\) vừa là đường cao, vừa là đường trung tuyến của \(\Delta ABC\).

b) Ta có \(BM \bot AC{\rm{ }}\left( {M \in AC} \right)\) nên \(\Delta BMC\) vuông tại \(M\), có \(BC\) là cạnh huyền.

Do đó, \(BM < BC\) (quan hệ giữa các cạnh trong tam giác)

Xét \(\Delta BMA\) vuông tại \(M\) có \(AB\) là cạnh huyền.

Do đó, \(BM < AB\) (1)

Lại có, tam giác \(ABC\) cân tại \(A\) nên \(AB = AC\) (2)

Từ (1) và (2) suy ra \(MB < AC\).

c) Xét \(\Delta KBC\) và \(\Delta MCB\) có:

\(BC\): chung (gt)

\(\widehat {ABC} = \widehat {ACB}\) (tam giác \(ABC\) cân)

\(\widehat {BKC} = \widehat {BMC} = 90^\circ \) (gt)

Suy ra \(\Delta KBC = \Delta MCB\) (ch – gn)

Suy ra \(KB = MC\) (hai cạnh tương ứng).

Lại có: \(\left\{ \begin{array}{l}AB = AK + KB\\AC = AM + MC\end{array} \right.\). Mà \(KB = MC\) (cmt)

Suy ra \(AK = AM\).

Xét \(\Delta KAI\) và \(\Delta MAI\), có:

\(AI\) chung (gt)

\(AK = AM\) (cmt)

\(\widehat {AKI} = \widehat {AMI} = 90^\circ \) (gt)

Suy ra \(\Delta KAI = \Delta MAI\) (ch – cgv)

Suy ra \(KI = MI\) (hai cạnh tương ứng)

Xét \(\Delta KIB\) và \(\Delta MIC\) có:

\(\widehat {IKB} = \widehat {IMC} = 90^\circ \)

\(IK = IM\) (cmt)

\(KB = MC\) (cmt)

Suy ra \(\Delta KIB = \Delta MIC\) (2cgv)

Suy ra \(\widehat {KIB} = \widehat {MIC}\) (hai góc tương ứng)

Mà hai góc ở vị trí đối đỉnh.

Suy ra \(K,I,C\) thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là: \(M = \left\{ {1;2;3;4;5;6;7} \right\}\).

Do đó, có 7 kết quả có thể xảy ra khi rút ngẫu nhiên một thẻ trong hộp.

b) Các kết quả thuận lợi cho biến cố: “Rút được thẻ ghi số chẵn” là: \(A = \left\{ {2;4;6} \right\}\).

Do đó, có 3 kết quả thuận lợi cho biến cố trên.

c) Kết quả thuận lợi cho biến cố \(B\): “Rút được thẻ ghi số là số chia cho 5 dư 2” là: \(B = \left\{ {2;7} \right\}\).

Suy ra, xác suất của biến cố \(B\) là: \(\frac{2}{7}.\)

d) Kết quả thuận lợi cho biến cố \(C\): “Rút được thẻ ghi số là hợp số” là: \(C = \left\{ {4;6} \right\}\).

Do đó, xác suất của biến cố này là: \(\frac{2}{7}.\)

Lời giải

Hướng dẫn giải

Xét \(\Delta DBC\), có \(\widehat B < \widehat C{\rm{ }}\left( {50^\circ < 65^\circ } \right)\).

Do đó, \(BD > DC\) (quan hệ giữa góc và cạnh trong tam giác)

Vậy bạn Hòa nên xuống đi bộ ở điểm dừng \(B\) để quãng đường đi bộ đến trường là ngắn nhất.