Câu hỏi:
01/07/2025 26
1. Xét các phương trình dưới đây:
\({\left( {x - 5} \right)^2} - 11 = 0;\) \( - \frac{3}{5}{x^3} - \frac{7}{2}x = 0;\) \(3{x^2} - 2\sqrt 3 x + 1 = 0;\) \({x^2} - 2y + 5 = 0.\)
a) Trong các phương trình trên, chỉ ra phương trình bậc hai một ẩn và các hệ số \(a,b,c\) của phương trình đó.
b) Giải phương trình tìm được ở phần a).
2. Giải bài toán sau bằng cách lập phương trình:
Sau dịp Tết Nguyên đán, hai anh em Hoàng có được số tiền mừng tuổi là 3,5 triệu đồng, hai anh em nhờ mẹ gửi số tiền đó vào ngân hàng. Mẹ nói với hai anh em: “Sau hai năm nữa, các con sẽ nhận được số tiền cả gốc lẫn lãi là \[3,875\] triệu đồng”. Hỏi thời điểm mẹ Hoàng gửi tiền, lãi suất ngân hàng là bao nhiêu phần trăm một năm, biết rằng số tiền lãi sau năm thứ nhất sẽ được tính vào tiền gốc của năm thứ hai.
1. Xét các phương trình dưới đây:
\({\left( {x - 5} \right)^2} - 11 = 0;\) \( - \frac{3}{5}{x^3} - \frac{7}{2}x = 0;\) \(3{x^2} - 2\sqrt 3 x + 1 = 0;\) \({x^2} - 2y + 5 = 0.\)
a) Trong các phương trình trên, chỉ ra phương trình bậc hai một ẩn và các hệ số \(a,b,c\) của phương trình đó.
b) Giải phương trình tìm được ở phần a).
2. Giải bài toán sau bằng cách lập phương trình:
Sau dịp Tết Nguyên đán, hai anh em Hoàng có được số tiền mừng tuổi là 3,5 triệu đồng, hai anh em nhờ mẹ gửi số tiền đó vào ngân hàng. Mẹ nói với hai anh em: “Sau hai năm nữa, các con sẽ nhận được số tiền cả gốc lẫn lãi là \[3,875\] triệu đồng”. Hỏi thời điểm mẹ Hoàng gửi tiền, lãi suất ngân hàng là bao nhiêu phần trăm một năm, biết rằng số tiền lãi sau năm thứ nhất sẽ được tính vào tiền gốc của năm thứ hai.
Quảng cáo
Trả lời:
1. a) Trong các phương trình trên, các phương trình bậc hai một ẩn là: \({\left( {x - 5} \right)^2} - 11 = 0\);
\(3{x^2} - 2\sqrt 3 x + 1 = 0.\)
• Xét phương trình \({\left( {x - 5} \right)^2} - 11 = 0\) hay \({x^2} - 10x + 14 = 0\) có \(a = 1;b = - 10;c = 14\).
• Xét phương trình \(3{x^2} - 2\sqrt 3 x + 1 = 0\) có \(a = 3;b = - 2\sqrt 3 ;c = 1\).
b) • Giải phương trình \({\left( {x - 5} \right)^2} - 11 = 0\), ta được: \({\left( {x - 5} \right)^2} = 11\) hay \({\left( {x - 5} \right)^2} = {\left( {\sqrt {11} } \right)^2}\)
Suy ra \(x - 5 = \sqrt {11} \) hoặc \(x - 5 = - \sqrt {11} \).
Do đó, \(x = 5 + \sqrt {11} \) hoặc \(x = 5 - \sqrt {11} \).
Vậy nghiệm của phương trình là \(\left\{ {5 + \sqrt {11} ;5 - \sqrt {11} } \right\}\).
• Giải phương trình \(3{x^2} - 2\sqrt 3 x + 1 = 0\), ta có: \(3{x^2} - 2\sqrt 3 x + 1 = 0\) hay \({\left( {\sqrt 3 x - 1} \right)^2} = 0\).
Suy ra \(\sqrt 3 x - 1 = 0\) nên \(x = \frac{1}{{\sqrt 3 }}\) hay \(x = \frac{{\sqrt 3 }}{3}\)
Vậy nghiệm của phương trình là \(\left\{ {\frac{{\sqrt 3 }}{3}} \right\}.\)
2. Gọi lãi suất của ngân hàng tại thời điểm mẹ Hoàng gửi tiền là \(a\% \) một năm \(\left( {0 < a < 100} \right).\)
Số tiền lãi sau năm thứ nhất gửi là \(3,5a\% = 0,035a\) (triệu đồng).
Tổng số tiền đem gửi năm thứ hai là: \(3,5 + 0,035a\) (triệu đồng).
Số tiền lãi sau năm thứ hai gửi là: \(\left( {3,5 + 0,035a} \right) \cdot a\% = 0,035a + 0,00035{a^2}\) (triệu đồng).
Theo đề bài, sau hai năm tổng số tiền cả gốc lẫn lãi mà anh em Hoàng nhận được là \[3,875\] triệu đồng nên ta có phương trình:
\[3,5 + 0,035a + 0,035a + 0,00035{a^2} = 3,875\]
\[0,00035{a^2} + 0,07a - 0,375 = 0\]
\[7{a^2} + 1400a - 7500 = 0\]
Giải phương trình trên ta được hai nghiệm \({a_1} \approx 5,2\) (thỏa mãn); \({a_2} = - 205,2\) (loại).
Vậy lãi suất của ngân hàng tại thời điểm mẹ Hoàng gửi tiền là khoảng \(5,2\% \) mỗi năm.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét đường tròn \(\left( O \right)\) có \(AC\) là đường kính nên \(\widehat {ABC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn). Xét đường tròn \(\left( {O'} \right)\) có \(AF\) là đường kính nên \(\widehat {ABF} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn). Do đó \(\widehat {CBF} = \widehat {ABC} + \widehat {ABF} = 90^\circ + 90^\circ = 180^\circ .\) Suy ra ba điểm \(C,\,\,B,\,\,F\) thẳng hàng. Chứng minh tương tự như trên, ta có \(\widehat {ADC} = 90^\circ \) |
![]() |
(góc nội tiếp chắn nửa đường tròn \(\left( O \right))\) và \(\widehat {AEF} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn \(\left( {O'} \right)).\)
Do đó \(\widehat {CDF} = \widehat {CEF} = 90^\circ \) nên đường tròn ngoại tiếp các tam giác vuông \(CDF,\,\,CEF\) có tâm là trung điểm của cạnh huyền \(CF\) hay các điểm \(C,\,\,D,\,\,E,\,\,F\) cùng nằm trên đường tròn đường kính \(CF.\)
Vậy tứ giác \(CDEF\) nội tiếp đường tròn đường kính \(CF.\)
b) Tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) nên \(\widehat {ABD} = \widehat {ACD}\) (hai góc nội tiếp cùng chắn cung \(AD)\)
Tứ giác \(ABFE\) nội tiếp đường tròn \(\left( {O'} \right)\) nên \(\widehat {ABE} = \widehat {AFE}\) (hai góc nội tiếp cùng chắn cung \(AE)\)
Tứ giác \(CDEF\) nội tiếp đường tròn đường kính \(CF\) nên \(\widehat {DCE} = \widehat {DFE}\) (hai góc nội tiếp cùng chắn cung \(DE)\) hay \(\widehat {ACD} = \widehat {AFE}\).
Từ đó suy ra \(\widehat {ABD} = \widehat {ABE}\) hay \(BA\) là tia phân giác của góc \(DBE.\)
Chứng minh tương tự, ta có \(\widehat {CED} = \widehat {BEC}\left( { = \widehat {CFD}} \right)\) hay \(EC\) là tia phân giác của góc \(BED.\)
Xét tam giác \(BDE\) có \(BA\) và \(EC\) là hai đường phân giác của tam giác, chúng cắt nhau tại \(A\) nên \(A\) là tâm đường tròn nội tiếp tam giác \(BDE.\)
Lời giải
a) Thay \(x = 2,y = 1\)vào hàm số \(\left( P \right):y = m{x^2}\), ta được: \(4m = 1\) nên \(m = \frac{1}{4}.\)
Vậy \(\left( P \right):y = \frac{1}{4}{x^2}\) thì đi qua điểm \(A\left( {2;1} \right)\).
b) Với \(m = - \frac{1}{2}\), ta có: \(\left( P \right):y = - \frac{1}{2}{x^2}\).
Lập bảng giá trị, ta có:
\(x\) |
\( - 2\) |
\( - 1\) |
\(0\) |
\(1\) |
\(2\) |
\(y = - \frac{1}{2}{x^2}\) |
\( - 2\) |
\( - \frac{1}{2}\) |
\(0\) |
\( - \frac{1}{2}\) |
\( - 2\) |
Ta có đồ thị hàm số sau:

c) Có \(y = - \frac{1}{2}{x^2}\), thay \(y = - 8\) vào hàm số ta có: \( - \frac{1}{2}{x^2} = - 8\) nên \({x^2} = 16\).
Do \(x = 4\) hoặc \(x = - 4\).
Vậy với \(m = - \frac{1}{2}\), điểm có tọa độ \(\left( {4; - 8} \right);\left( { - 4; - 8} \right)\).
d) Gọi \(I\left( {{x_0}; - \frac{1}{2}x_0^2} \right)\) là điểm có tổng hoành độ và tung độ bằng \(0.\)
Ta có: \( - \frac{1}{2}x_0^2 + {x_0} = 0\) hay \({x_0}\left( { - \frac{1}{2}{x_0} + 1} \right) = 0\), suy ra \({x_0} = 0\) hoặc \({x_0} = 2\).
Với \({x_0} = 0\) thì \({y_0} = - \frac{1}{2}\).
Với \({x_0} = 2\) thì \({y_0} = - 2.\)
Vậy điểm thỏa mãn có \(\left( {0;0} \right),\left( {2; - 2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.