Câu hỏi:

01/07/2025 12

Cho parabol \(\left( P \right):y = m{x^2}\).

     a) Tìm \(m\) để \(\left( P \right)\) đi qua điểm \(A\left( {2;1} \right)\).

     b) Vẽ \(\left( P \right)\) khi \(m =  - \frac{1}{2}\).

     c) Với \(m =  - \frac{1}{2}\), tìm điểm có tung độ bằng \( - 8.\)

     d) Với \(m =  - \frac{1}{2}\), hãy tìm điểm thuộc parabol mà có tổng hoành độ và tung độ bằng \(0.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

     a) Thay \(x = 2,y = 1\)vào hàm số \(\left( P \right):y = m{x^2}\), ta được: \(4m = 1\) nên \(m = \frac{1}{4}.\)

     Vậy \(\left( P \right):y = \frac{1}{4}{x^2}\) thì đi qua điểm \(A\left( {2;1} \right)\).

     b) Với \(m =  - \frac{1}{2}\), ta có: \(\left( P \right):y =  - \frac{1}{2}{x^2}\).

Lập bảng giá trị, ta có:

\(x\)

\( - 2\)

\( - 1\)

\(0\)

\(1\)

\(2\)

\(y =  - \frac{1}{2}{x^2}\)

\( - 2\)

\( - \frac{1}{2}\)

\(0\)

\( - \frac{1}{2}\)

\( - 2\)

Ta có đồ thị hàm số sau:

Cho parabol \(\left( P \right):y = m{x^2}\).  	a) Tìm \(m\) để \(\left( P \right)\) đi qua điểm \(A\left( {2;1} \right)\). 	b) Vẽ \(\left( P \right)\) khi \(m =  - \frac{1}{2}\). 	c) Với \(m =  - \frac{1}{2}\), tìm điểm có tung độ bằng \( - 8.\) 	d) Với \(m =  - \frac{1}{2}\), hãy tìm điểm thuộc parabol mà có tổng hoành độ và tung độ bằng \(0.\) (ảnh 1)

     c) Có \(y =  - \frac{1}{2}{x^2}\), thay \(y =  - 8\) vào hàm số ta có: \( - \frac{1}{2}{x^2} =  - 8\) nên \({x^2} = 16\).

     Do \(x = 4\) hoặc \(x =  - 4\).

     Vậy với \(m =  - \frac{1}{2}\), điểm có tọa độ \(\left( {4; - 8} \right);\left( { - 4; - 8} \right)\).

     d) Gọi \(I\left( {{x_0}; - \frac{1}{2}x_0^2} \right)\) là điểm có tổng hoành độ và tung độ bằng \(0.\)

     Ta có: \( - \frac{1}{2}x_0^2 + {x_0} = 0\) hay \({x_0}\left( { - \frac{1}{2}{x_0} + 1} \right) = 0\), suy ra \({x_0} = 0\) hoặc \({x_0} = 2\).

     Ÿ Với \({x_0} = 0\) thì \({y_0} =  - \frac{1}{2}\).

     ŸVới \({x_0} = 2\) thì \({y_0} =  - 2.\)

     Vậy điểm thỏa mãn có \(\left( {0;0} \right),\left( {2; - 2} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. a) Trong các phương trình trên, các phương trình bậc hai một ẩn là: \({\left( {x - 5} \right)^2} - 11 = 0\);

     \(3{x^2} - 2\sqrt 3 x + 1 = 0.\)

• Xét phương trình \({\left( {x - 5} \right)^2} - 11 = 0\) hay  \({x^2} - 10x + 14 = 0\) có \(a = 1;b =  - 10;c = 14\).

• Xét phương trình \(3{x^2} - 2\sqrt 3 x + 1 = 0\) có \(a = 3;b =  - 2\sqrt 3 ;c = 1\).

b) • Giải phương trình \({\left( {x - 5} \right)^2} - 11 = 0\), ta được: \({\left( {x - 5} \right)^2} = 11\) hay \({\left( {x - 5} \right)^2} = {\left( {\sqrt {11} } \right)^2}\)

     Suy ra \(x - 5 = \sqrt {11} \) hoặc \(x - 5 =  - \sqrt {11} \).

     Do đó, \(x = 5 + \sqrt {11} \) hoặc \(x = 5 - \sqrt {11} \).

     Vậy nghiệm của phương trình là \(\left\{ {5 + \sqrt {11} ;5 - \sqrt {11} } \right\}\).

• Giải phương trình \(3{x^2} - 2\sqrt 3 x + 1 = 0\), ta có: \(3{x^2} - 2\sqrt 3 x + 1 = 0\) hay \({\left( {\sqrt 3 x - 1} \right)^2} = 0\).

     Suy ra \(\sqrt 3 x - 1 = 0\) nên \(x = \frac{1}{{\sqrt 3 }}\) hay \(x = \frac{{\sqrt 3 }}{3}\)

     Vậy nghiệm của phương trình là \(\left\{ {\frac{{\sqrt 3 }}{3}} \right\}.\)

     2. Gọi lãi suất của ngân hàng tại thời điểm mẹ Hoàng gửi tiền là \(a\% \) một năm \(\left( {0 < a < 100} \right).\)

Số tiền lãi sau năm thứ nhất gửi là \(3,5a\%  = 0,035a\) (triệu đồng).

Tổng số tiền đem gửi năm thứ hai là: \(3,5 + 0,035a\) (triệu đồng).

Số tiền lãi sau năm thứ hai gửi là: \(\left( {3,5 + 0,035a} \right) \cdot a\%  = 0,035a + 0,00035{a^2}\) (triệu đồng).

Theo đề bài, sau hai năm tổng số tiền cả gốc lẫn lãi mà anh em Hoàng nhận được là \[3,875\] triệu đồng nên ta có phương trình:

\[3,5 + 0,035a + 0,035a + 0,00035{a^2} = 3,875\]

\[0,00035{a^2} + 0,07a - 0,375 = 0\]

\[7{a^2} + 1400a - 7500 = 0\]

Giải phương trình trên ta được hai nghiệm \({a_1} \approx 5,2\) (thỏa mãn); \({a_2} =  - 205,2\) (loại).

Vậy lãi suất của ngân hàng tại thời điểm mẹ Hoàng gửi tiền là khoảng \(5,2\% \) mỗi năm.

Lời giải

a) Phương trình \({x^2} - 2mx - 2{m^2} - 1 = 0\) có \(\Delta ' = {\left( { - m} \right)^2} + 2{m^2} + 1 = 3{m^2} + 1 > 0\) với mọi \(m\).

Do đó, phương trình luôn có nghiệm.

b) Với \(m = 2,\) ta có: \({x^2} - 4x - 9 = 0\).

Ta có biệt thức \(\Delta ' = {\left( { - 2} \right)^2} - \left( { - 9} \right) = 13 > 0\).

Do đó, phương trình có hai nghiệm phân biệt.

Đó là \({x_1} = 2 - \sqrt {13} \) và \({x_2} = 2 + \sqrt {13} \).

Vậy tập nghiệm của phương trình là \(\left\{ {2 - \sqrt {13} ;2 + \sqrt {13} } \right\}\).

c) Xét phương trình \({x^2} - 2mx - 2{m^2} - 1 = 0\) có:

\(\Delta ' = {\left( { - m} \right)^2} - 1 \cdot \left( { - 2{m^2} - 1} \right) = {m^2} + 2{m^2} + 1 = 3{m^2} + 1.\)

Với mọi \(m \in \mathbb{R}\) ta thấy \(3{m^2} + 1 > 0\) nên \(\Delta ' > 0.\)

Do đó, phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi giá trị của \(m.\)

Theo định lí Viète, ta có: \({x_1} + {x_2} = 2m;\,\,{x_1}{x_x} =  - 2{m^2} - 1.\)

Ta có: \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} =  - 3\)

\(\frac{{x_1^2 + x_2^2}}{{{x_1}{x_2}}} =  - 3\)

\(\frac{{x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2}}}{{{x_1}{x_2}}} =  - 3\)

\(\frac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}{{{x_1}{x_2}}} =  - 3\)

\(\frac{{{{\left( {2m} \right)}^2} - 2\left( { - 2{m^2} - 1} \right)}}{{ - 2{m^2} - 1}} =  - 3\)

\(4{m^2} + 4{m^2} + 2 = 6{m^2} + 3\)

\(2{m^2} = 1\)

\({m^2} = \frac{1}{2}\)

\(m = \frac{{\sqrt 2 }}{2}\) (thỏa mãn) hoặc \(m =  - \frac{{\sqrt 2 }}{2}\) (thỏa mãn).

Vậy \(m \in \left\{ {\frac{{\sqrt 2 }}{2};\,\, - \frac{{\sqrt 2 }}{2}} \right\}.\)