Quảng cáo
Trả lời:
Phương trình bậc nhất hai ẩn có dạng \[ax + by = c\] với \(a \ne 0\) hoặc \(b \ne 0\).
Xét các đáp án, ta thấy:
\[\left( {x - 5} \right) + \left( {2y - 6} \right) = 0\] hay \(x - 5 + 2y - 6 = 0\) suy ra \(x + 2y = 11\) nên đáp án A là phương trình bậc nhất hai ẩn.
\[5x - 3z = 6\] là phương trình bậc nhất hai ẩn \(x,z\) nên đáp án B là phương trình bậc nhất hai ẩn.
\(5x - 8y = 0\) là phương trình bậc nhất hai ẩn \(x,y\)
\[\left( {x - 2} \right)\left( {2y - 3} \right) = 3\] hay \[2xy - 3x - 4y + 6 = 3\] suy ra \[2xy - 3x - 4y = - 3\] nên đáp án D không là phương trình bậc nhất hai ẩn.
Chọn đáp án D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
1. Xét tam giác \[ABC\] vuông tại \(A\), ta có:
\(AB = BC\,.\,\cos C\) nên
\(BC = \frac{{AB}}{{\cos C}} = \frac{6}{{\frac{3}{5}}} = 10\,\,\left( {{\rm{cm}}} \right)\).
Áp dụng định lí Pythagore, ta có:
\(B{C^2} = A{B^2} + A{C^2}\)
\(A{C^2} = B{C^2} - A{B^2} = {10^2} - {6^2} = 64\), suy ra \(AC = 8\,\,{\rm{cm}}\).
Xét \(\Delta ABH\) và \(\Delta CBA\) có \(\widehat {AHB} = \widehat {BAC} = 90^\circ ;\,\,\widehat B\) chung.
Do đó .
Suy ra \(\frac{{AB}}{{BC}} = \frac{{BH}}{{AB}}\) hay \(A{B^2} = BH\,.\,BC\) nên \(BH = \frac{{A{B^2}}}{{BC}} = \frac{{{6^2}}}{{10}} = 3,6\,\,\left( {{\rm{cm}}} \right)\).
Vậy \(BC = 10\,\,{\rm{cm}},\,\,AC = 8\,\,{\rm{cm}},\,\,BH = 3,6\,\,{\rm{cm}}.\)
2. Quãng đường chiếc thuyền đi được giữa hai lần quan sát là \(CD.\)
Xét \(\Delta BAC\) vuông tại \(A\) có \(AC = 75\cot \widehat {BCA} = 75\cot 45^\circ = 75\,\,\left( {\rm{m}} \right)\).
Xét \(\Delta DAB\) vuông tại \(A\) có \(AD = 75\cot \widehat {BDA} = 75\cot 30^\circ = 75\sqrt 3 \,\,\left( {\rm{m}} \right)\).
Quãng đường chiếc thuyền đi được giữa hai lần quan sát là:
\(CD = AD - AC = 75\sqrt 3 - 75 \approx 55\,\,\left( {\rm{m}} \right)\).
Vậy chiếc thuyền đi được khoảng 55 mét giữa hai lần quan sát.
Lời giải
Hướng dẫn giải
Ta có: \[{x^2} + 2{y^2} + 2xy + 7x + 7y + 10 = 0.\]
\(\left( {{x^2} + 2xy + {y^2}} \right) + 7x + 7y + {y^2} + 10 = 0\)
\({\left( {x{\rm{ }} + {\rm{ }}y} \right)^2} + 7\left( {x + y} \right) + {y^2} + 10 = 0 & \left( 1 \right)\)
Đặt \[S = x + y\].
Khi đó phương trình \(\left( 1 \right)\) trở thành: \[{S^2} + 7S + {y^2} + 10 = 0\]
\({S^2} + 7S + \frac{{49}}{4} = \frac{9}{4} - {y^2}\)
\({\left( {S + \frac{7}{2}} \right)^2} = \frac{9}{4} - {y^2} \le \frac{9}{4}\).
Dấu xảy ra khi và chỉ khi \(\frac{9}{4} - {y^2} = \frac{9}{4}\) hay \(y = 0\).
Do đó \({\left( {S + \frac{7}{2}} \right)^2} \le \frac{9}{4}\) nên \(\frac{{ - 3}}{2} \le S + \frac{7}{2} \le \frac{3}{2}\) hay \[ - 5 \le S \le - 2.\]
Ta có \(P = \frac{{2x + 2y - 3}}{{x + y + 6}} = \frac{{2\left( {x + y + 6} \right) - 15}}{{x + y + 6}}\) \( = 2 - \frac{{15}}{{x + y + 6}} = 2 - \frac{{15}}{{S + 6}} & \left( 2 \right)\)
Với \[ - \,5 \le S \le - \,2\] thì \(1 \le S + 6 \le 4\)
\(\frac{{15}}{4} \le \frac{{15}}{{S + 6}} \le 15\)
\(2 - 15 \le 2 - \frac{{15}}{{S + 6}} \le 2 - \frac{{15}}{4}\)
\( - 13 \le 2 - \frac{{15}}{{S + 6}} \le - \frac{7}{4}\)
\( - 13 \le P \le - \frac{7}{4}\).
Vậy giá trị nhỏ nhất của biểu thức \[P\] là \[ - 13\] khi \(x = - 5\,;\,\,y = 0\).
Và giá trị lớn nhất của biểu thức \(P\) là \(\frac{{ - 7}}{4}\) khi \[x = - 2\,;\,\,y = 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.