Câu hỏi:
03/07/2025 28(2,0 điểm)
1) Giải các phương trình và bất phương trình sau:
a) \(\frac{{x - 1}}{{x + 2}} - \frac{x}{{x - 2}} = \frac{{4 - 6x}}{{{x^2} - 4}};\)b) \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3.\]
2) Xác định cặp số \(\left( {a;\,\,b} \right)\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}2x + by = - 4\\bx - ay = - 5\end{array} \right.\) có nghiệm là \(\left( {1;\,\, - 2} \right).\)
Quảng cáo
Trả lời:
Hướng dẫn giải
1)
a) \(\frac{{x - 1}}{{x + 2}} - \frac{x}{{x - 2}} = \frac{{4 - 6x}}{{{x^2} - 4}};\) Điều kiện xác định \(x - 2 \ne 0\) và \(x + 2 \ne 0\) hay \(x \ne 2\) và \(x \ne - 2.\) Quy đồng mẫu hai vế của phương trình, ta được \[\frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{x\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{4 - 6x}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\] Suy ra \[\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right) = 4 - 6x\] \[{x^2} - 3x + 2 - {x^2} + 2x = 4 - 6x\] \[ - 5x + 2 = 4 - 6x\] \[6x - 5x = 4 - 2\] \[x = 2\] Giá trị \[x = 2\] không thỏa mãn ĐKXĐ. Vậy phương trình đã cho vô nghiệm. |
b) \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\] \[{x^2} + 4x + 4\; < x + {x^2}\;--3\] \[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) < - 4 - 3\] \[3x < - 7\] \[x < - \frac{7}{3}\] Vậy nghiệm của bất phương trình là \[x < - \frac{7}{3}.\] |
2)
Để hệ phương trình đã cho có nghiệm là \(\left( {1;\,\, - 2} \right)\) thì \(x = 1,\,\,y = - 2\) thỏa mãn hệ phương trình đó.
Khi đó, ta có: \(\left\{ \begin{array}{l}2 \cdot 1 + b \cdot \left( { - 2} \right) = - 4\\b \cdot 1 - a \cdot \left( { - 2} \right) = - 5\end{array} \right.\) hay \(\left\{ \begin{array}{l}2 - 2b = - 4\,\,\,\,\,\,\,\,\,\left( 1 \right)\\b + 2a = - 5\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Giải phương trình \(\left( 1 \right):\) \(2 - 2b = - 4\,,\) hay \( - 2b = - 6,\) nên \(b = 3.\)
Thay \(b = 3\) vào phương trình \(\left( 2 \right),\) ta được: \(3 + 2a = - 5,\) hay \(2a = - 8,\) nên \(a = - 4.\)
Vậy cặp số \(\left( {a;\,\,b} \right)\) cần tìm là: \(\left( { - 4;\,\,3} \right).\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
1) Xét tam giác \(AHB\) vuông tại \(H\) nên \(\sin B = \frac{{AH}}{{AB}}\) Suy ra \(AB = \frac{{AH}}{{\sin B}} = \frac{5}{{\sin 70^\circ }} \approx 5,32\,\,\left( {{\rm{cm}}} \right)\) Xét tam giác \(AHC\) vuông tại \(H\) nên \(\sin C = \frac{{AH}}{{AC}}\) Suy ra \(AC = \frac{{AH}}{{\sin C}} = \frac{5}{{\sin 35^\circ }} \approx 8,72\,\,\left( {{\rm{cm}}} \right)\) |
|
Áp dụng hệ thức giữa cạnh huyền và cạnh góc vuông trong tam giác vuông, ta có
\(BH = AH \cdot \cot B = 5 \cdot \cot 70^\circ \approx 1,82\,\,\left( {{\rm{cm}}} \right)\)
\(CH = AH \cdot \cot C = 5 \cdot \cot 35^\circ \approx 7,14\,\,\left( {{\rm{cm}}} \right)\)
Do đó \(BC = BH + HC \approx 1,82 + 7,14 = 8,96\,\,\left( {{\rm{cm}}} \right)\)
Vậy độ dài các cạnh của tam giác \(ABC\) là \(AB \approx 5,32\,\,{\rm{cm}}\,{\rm{,}}\,\,AC \approx 8,72\,\,{\rm{cm}}\,{\rm{,}}\,\,BC \approx 8,96\,\,{\rm{cm}}\,.\)
2) Giả sử trong hình vẽ \(BC\) là độ cao của ngọn hải đăng so với mực nước biển thì \(AB\) là khoảng cách từ tàu đến chân ngọn hải đăng, góc nghiêng xuống \[\widehat {ACx} = 27^\circ \] nên \[\widehat {CAB} = 27^\circ .\] Xét \(\Delta ABC\) vuông tại \(B\) có \(AB = BC \cdot \cot \widehat {CAB}\). Suy ra \[AB = 149 \cdot \cot 27^\circ \approx 292\,\,\left( {\rm{m}} \right)\]. |
|
Vậy tàu đang đứng cách chân hải đăng khoảng 292 mét.
Lời giải
Hướng dẫn giải
a) Sai. Thay \[x = - 2\,;{\rm{ }}y = 1\] vào phương trình \[\left( * \right)\], ta được:
\[2 \cdot \left( { - 2} \right)--5 \cdot 1 = --\,4--5 = --9 \ne 1.\]
Do đó cặp số \[\left( { - 2\,;\,\,1} \right)\] không phải là nghiệm của phương trình \[\left( * \right)\].
b) Đúng. Phương trình \[\left( * \right)\] là phương trình bậc nhất hai ẩn \[x,{\rm{ }}y\] và có vô số nghiệm.
c) Sai. Hệ số \[a;\,\,b;\,\,c\] của phương trình \[\left( * \right)\] là \[2\,;\,\, - 5\,;\,\,1.\]
d) Đúng. Ta có \[2x - 5y = 1\] suy ra \[5y = 2x - 1\] nên \[y = \frac{2}{5}x - \frac{1}{5}\].
Do đó, tập hợp các điểm có tọa độ \(\left( {x\,;\,\,y} \right)\) thỏa mãn phương trình \[\left( * \right)\] là đường thẳng \[y = \frac{2}{5}x - \frac{1}{5}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.