Câu hỏi:

05/07/2025 22

Cho tam giác \(ABC\) vuông tại \(A\). Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Xét \(\Delta ABC\) vuông tại \(A\), ta có:

⦁ \(B{C^2} = A{B^2} + A{C^2}\) (định lí Pythagore);

⦁ \(\widehat {B\,} + \widehat {C\,} = 90^\circ \) nên \(\sin C = \cos B\) và \(\cot B = \tan C\)

Suy ra \(\cot B - \tan C = 0\).

⦁ \(\cot C = \frac{{AC}}{{AB}}\).

Vậy khẳng định ở phương án C là đúng.

Cho tam giác   A B C   vuông tại   A  . Khẳng định nào sau đây là đúng? (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có:

\[\frac{{a + c}}{{b + c}} - \frac{a}{b} = \frac{{b\left( {a + c} \right) - a\left( {b + c} \right)}}{{b\left( {b + c} \right)}} = \frac{{ab + bc - ab - ac}}{{b\left( {b + c} \right)}} = \frac{{bc - ac}}{{b\left( {b + c} \right)}} = \frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}}.\]

Theo bài, \(\frac{a}{b} < 1\) nên \(\frac{{b - a}}{b} > 0\) suy ra \(b - a > 0\) (do \(b > 0)\)</>

Do đó \[\frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}} > 0\] với mọi số thực dương \(a,\,\,b,\,\,c\) thỏa mãn \(\frac{a}{b} < 1.\)

Như vậy, bất đẳng thức \(\frac{a}{b} < \frac{{a + c}}{{b + c}}\,\,\,\left( 1 \right)\) được chứng minh.

⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có: \(\frac{a}{{a + b + c}} < 1\).

Áp dụng bất đẳng thức (1) ta được \(\frac{a}{{a + b + c}} < \frac{{a + d}}{{a + b + c + d}}.\)

Tương tự, ta có: \(\frac{b}{{b + c + d}} < \frac{{b + a}}{{a + b + c + d}};\,\,\,\frac{c}{{c + d + a}} < \frac{{c + b}}{{a + b + c + d}};\,\,\,\frac{d}{{d + a + b}} < \frac{{d + a}}{{a + b + c + d}}.\)

Suy ra

\(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < \frac{{a + d}}{{a + b + c + d}} + \frac{{b + a}}{{a + b + c + d}} + \frac{{c + b}}{{a + b + c + d}} + \frac{{d + a}}{{a + b + c + d}}\)

Do đó \(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < \frac{{2\left( {a + b + c + d} \right)}}{{a + b + c + d}} = 2\). (2)

⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có: \(a + b + c < a + b + c + d\) nên \(\frac{a}{{a + b + c}} > \frac{a}{{a + b + c + d}}\).</>

Tương tự, ta có \(\frac{b}{{b + c + d}} > \frac{b}{{a + b + c + d}};\,\,\,\frac{c}{{c + d + a}} > \frac{c}{{a + b + c + d}};\,\,\,\frac{d}{{d + a + b}} > \frac{d}{{a + b + c + d}}.\)

Suy ra

\(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} > \frac{a}{{a + b + c + d}} + \frac{b}{{a + b + c + d}} + \frac{c}{{a + b + c + d}} + \frac{d}{{a + b + c + d}}\)

Do đó \(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} > \frac{{a + b + c + d}}{{a + b + c + d}} = 1\). (3)

Từ (2) và (3) suy ra \(1 < \frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < 2\).

Như vậy bất đẳng thức \(1 < \frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < 2\) đã được chứng minh.

Lời giải

Hướng dẫn giải

1. Do đường thẳng \(y = ax + b\) đi qua điểm \(M\left( {3;\,\, - 5} \right)\) nên thay \(x = 3,\,\,y = - 5\) vào hàm số \(y = ax + b,\) ta được: \( - 5 = 3a + b\).

Tương tự, do đường thẳng đi qua điểm \(N\left( {1;\,\,2} \right)\) nên ta có: \(2 = a + b\).

Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{3a + b = - 5}\\{a + b = 2}\end{array}} \right.\).

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(2a = - 7,\) suy ra \(a = - \frac{7}{2}\).

Thay \(a = - \frac{7}{2}\) vào phương trình \(a + b = 2\), ta được:

\( - \frac{7}{2} + b = 2,\) suy ra \(b = \frac{{11}}{2}\).

Vậy \(a = - \frac{7}{2}\) và \(b = \frac{{11}}{2}\).

2. Gọi số có hai chữ số cần tìm là \(\overline {xy} {\rm{ }}\left( {x \in \mathbb{N}*,\,\,y \in \mathbb{N}*,\,\,0 < x \le 9,\,\,0 \le y \le 9} \right).\)

Nếu đổi chỗ hai chữ số của nó thì được số mới là \(\overline {yx} \).

Ta có: \(\overline {xy} = 10x + y\) và \(\overline {yx} = 10y + x\).

Theo bài, nếu đổi chỗ hai chữ số của nó thì được số mới lớn hơn số đã cho là \(63\) nên ta có phương trình: \(10y + x = \left( {10x + y} \right) + 63\) hay \( - 9x + 9y = 63\) nên \(x - y = - 7.\) (1)

Mặt khác, tổng của số đã cho và số mới tạo thành bằng \(99\) nên ta có phương trình: \(\left( {10x + y} \right) + \left( {10y + x} \right) = 99\) hay \(11x + 11y = 99\) nên \(x + y = 9.\) (2)

Từ (1) và (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = - 7\\x + y = 9.\end{array} \right.\)

Cộng từng vế hai phương trình của hệ trên, ta được:

\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).

Thay \(x = 1\) vào phương trình \(x + y = 9,\) ta được: \(1 + y = 9,\) suy ra \(y = 8\) (thỏa mãn).

Vậy số cần tìm là \(18\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP