(2,0 điểm)
1. Giải các phương trình sau:
a) \(\left( { - 2x + 5} \right)\left( {\frac{3}{4}x - 6} \right) = 0\).
b) \(\frac{{x - 1}}{{x + 2}} - \frac{x}{{x - 2}} = \frac{{4 - 6x}}{{{x^2} - 4}}\).
2. Giải các bất phương trình sau:
a) \(9x + 7 > - 12x - 1\).
b) \[\frac{{2x + 1}}{3} - \frac{{x - 4}}{4} \le \frac{{3x + 1}}{6} - \frac{{x - 4}}{{12}}.\]
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 9 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
|
1. a) \(\left( { - 2x + 5} \right)\left( {\frac{3}{4}x - 6} \right) = 0\) \( - 2x + 5 = 0\) hoặc \(\frac{3}{4}x - 6 = 0\) \( - 2x = - 5\) hoặc \(\frac{3}{4}x = 6\) \(x = \frac{5}{2}\) hoặc \(x = 8\) Vậy phương trình đã cho có hai nghiệm là \(x = \frac{5}{2};\) \(x = 8\). |
1. b) Điều kiện xác định: \(x \ne 2\) và \(x \ne - 2.\) \(\frac{{x - 1}}{{x + 2}} - \frac{x}{{x - 2}} = \frac{{4 - 6x}}{{{x^2} - 4}}\) \[\frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{x\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{4 - 6x}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\] \[\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right) = 4 - 6x\] \[{x^2} - 3x + 2 - {x^2} + 2x = 4 - 6x\] \[ - 5x + 2 = 4 - 6x\] \[6x - 5x = 4 - 2\] \[x = 2\] (không thỏa mãn). Vậy phương trình đã cho vô nghiệm. |
|
2. a) \(9x + 7 > - 12x - 1\) \(9x + 12x \ge - 1 - 7\) \(21x \ge - 8\) \(x \ge \frac{{ - 8}}{{21}}\) Vậy bất phương trình đã cho có nghiệm là \(x \ge \frac{{ - 8}}{{21}}.\) |
2. b) \[\frac{{2x + 1}}{3} - \frac{{x - 4}}{4} \le \frac{{3x + 1}}{6} - \frac{{x - 4}}{{12}}\] \[\frac{{4\left( {2x + 1} \right)}}{{12}} - \frac{{3\left( {x - 4} \right)}}{{12}} \le \frac{{2\left( {3x + 1} \right)}}{{12}} - \frac{{x - 4}}{{12}}\] \[4\left( {2x + 1} \right) - 3\left( {x - 4} \right) \le 2\left( {3x + 1} \right) - \left( {x - 4} \right)\] \[8x + 4 - 3x + 12 \le 6x + 2 - x + 4\] \[5x + 16 \le 5x + 6\] \[5x - 5x \le 6 - 16\] \[0x \le - 10\]. Vậy bất phương trình đã cho vô nghiệm. |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(x{\rm{\;(kg)}}\) là khối lượng axit \(X\) có trong dung dịch \(A\) và \(y{\rm{\;(kg)}}\) là khối lượng dung dịch chất \(A\) \(\left( {y > x > 0} \right)\).
Khi thêm \[1\] kg nước vào dung dịch \[A\] thì được dung dịch \[B\] có khối lượng là: \(y + 1{\rm{\;(kg)}}\).
Theo bài, nồng độ của dung dịch \(B\) là \[20\% \] nên ta có phương trình:
\(\frac{x}{{y + 1}} \cdot 100\% = 20\% \) hay \(5x = y + 1\) suy ra \(5x - y = 1\) (1)
Khi thêm \[1\] kg axit vào dung dịch \[B\] thì được dung dịch \[C\] có khối lượng là: \(y + 1 + 1 = y + 2{\rm{\;(kg)}}\) và khối lượng axit \(X\) có trong dung dịch lúc này là \(x + 1{\rm{\;(kg)}}\)
Theo bài, nồng độ của dung dịch \(C\) là \[33\frac{1}{3}\% \] nên ta có phương trình:
\(\frac{{x + 1}}{{y + 2}} \cdot 100\% = 33\frac{1}{3}\% \) hay \(3\left( {x + 1} \right) = y + 2\) suy ra \(3x - y = - 1\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}5x - y = 1\\3x - y = - 1\end{array} \right.\)
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).
Thay \(x = 1\) vào phương trình \(5x = y + 1\) ta được:
\(5 \cdot 1 = y + 1\), suy ra \(y = 4\) (thỏa mãn).
Vậy nồng độ axit của dung dịch \(A\) là: \(\frac{x}{y} \cdot 100\% = \frac{1}{4} \cdot 100\% = 25\% .\)
Câu 2
A. \({d_1}\).
B. \({d_2}\).
C. \({d_3}\).
D. \({d_4}\).
Lời giải
Đáp án đúng là: D
Ta viết phương trình \(2x - y = 1\) về dạng \(y = 2x - 1\).
⦁ Xét cặp số \(\left( {1;\,\,0} \right),\) thay \(x = 1\) vào phương trình \(y = 2x - 1\), ta được: \(y = 2 \cdot 1 - 1 = 1 \ne 0.\)
Do đó, cặp số \(\left( {1;\,\,0} \right)\) không phải là nghiệm của phương trình \(2x - y = 1\), hay đường thẳng \(y = 2x - 1\) không đi qua điểm \(\left( {1;\,\,0} \right)\). Do đó đường thẳng \({d_1},\,\,{d_3}\) không thỏa mãn.
⦁ Xét cặp số \(\left( {0;\,\, - 1} \right),\) thay \(x = 0\) và \(y = - 1\) vào phương trình \(y = 2x - 1\), ta được:
\(y = 2x - 1 = 2 \cdot 0 - 1 = - 1\).
Do đó, cặp số \(\left( {0;\,\, - 1} \right)\) là nghiệm của phương trình \(2x - y = 1\), hay đường thẳng \(y = 2x - 1\) đi qua điểm \(\left( {0;\,\, - 1} \right)\).
Quan sát hình b) và hình d) ta thấy chỉ có đường thẳng \({d_4}\) thỏa mãn.
Vậy ta chọn phương án D.
Câu 3
A. \(\frac{1}{3}\).
B. \(\frac{{2\sqrt 2 }}{3}\).
C. \(2\sqrt 2 \).
D. \(\frac{{\sqrt 2 }}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
