Câu hỏi:

05/07/2025 16

Cho hệ phương trình \(\left\{ \begin{array}{l}x - y = 8\\2x + 3y = - 9\end{array} \right..\) Cho các khẳng định sau:

(i) Từ phương trình thứ nhất của hệ, biểu diễn \(y\) theo \(x,\) ta được: \(y = x - 8\).

(ii) Từ phương trình thứ nhất của hệ, biểu diễn \(x\) theo \(y,\) ta được: \(x = 8 - y.\)

(iii) Nghiệm của hệ là cặp số \(\left( {3;\,\, - 5} \right)\).

Số khẳng định đúng trong các khẳng định trên là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

⦁ Từ phương trình thứ nhất của hệ, biểu diễn \(x\) theo \(y,\) ta được: \(x = 8 + y.\)

⦁ Từ phương trình thứ nhất của hệ, biểu diễn \(y\) theo \(x,\) ta được: \(y = x - 8\).

Thế \(y = x - 8\) vào phương trình thứ hai của hệ, ta được:

\(2x + 3\left( {x - 8} \right) = - 9,\) hay \(2x + 3x - 24 = - 9\) suy ra \(5x = 15\) nên \(x = 3.\)

Thay \(x = 3\) vào phương trình \(y = x - 8\), ta được: \(y = 3 - 8 = - 5.\)

Do đó hệ phương trình có nghiệm là \(\left( {3;\,\, - 5} \right)\).

Như vậy, có 2 khẳng định đúng là (i), (iii). Ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Do \[\alpha ,\,\,\beta \] là số đo các góc nhọn của một tam giác vuông nên \(\alpha + \beta = 90^\circ \).

Khi đó \(\sin \alpha = \cos \beta ,\,\,\cos \alpha = \sin \beta ,\,\,\tan \alpha = \cot \beta ,\,\,\cot \alpha = \tan \beta \) và \(\tan \alpha \cdot \cot \alpha = 1\).

Do đó \(\tan \alpha - \cot \beta = \tan \alpha - \tan \alpha = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP