Câu hỏi:

05/07/2025 38 Lưu

Cho hệ phương trình \(\left\{ \begin{array}{l}x - y = 8\\2x + 3y = - 9\end{array} \right..\) Cho các khẳng định sau:

(i) Từ phương trình thứ nhất của hệ, biểu diễn \(y\) theo \(x,\) ta được: \(y = x - 8\).

(ii) Từ phương trình thứ nhất của hệ, biểu diễn \(x\) theo \(y,\) ta được: \(x = 8 - y.\)

(iii) Nghiệm của hệ là cặp số \(\left( {3;\,\, - 5} \right)\).

Số khẳng định đúng trong các khẳng định trên là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

⦁ Từ phương trình thứ nhất của hệ, biểu diễn \(x\) theo \(y,\) ta được: \(x = 8 + y.\)

⦁ Từ phương trình thứ nhất của hệ, biểu diễn \(y\) theo \(x,\) ta được: \(y = x - 8\).

Thế \(y = x - 8\) vào phương trình thứ hai của hệ, ta được:

\(2x + 3\left( {x - 8} \right) = - 9,\) hay \(2x + 3x - 24 = - 9\) suy ra \(5x = 15\) nên \(x = 3.\)

Thay \(x = 3\) vào phương trình \(y = x - 8\), ta được: \(y = 3 - 8 = - 5.\)

Do đó hệ phương trình có nghiệm là \(\left( {3;\,\, - 5} \right)\).

Như vậy, có 2 khẳng định đúng là (i), (iii). Ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1. Đổi \(5,25\) tấn \( = 5\,\,250\,\,{\rm{kg}}\)

Gọi \(x\) (thùng) là số sữa mà xe có thể chở \(\left( {x \in \mathbb{N}*} \right)\).

Khi đó, khối lượng sữa mà xe chở là: \(10x\,\,\left( {{\rm{kg}}} \right).\)

Tổng khối lượng sữa và bác tài xế là: \(65 + 10x\,\,\left( {{\rm{kg}}} \right).\)

Do trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5\,\,250\,\,{\rm{kg}}\) nên ta có

\(65 + 10x \le 5\,\,250\)

\(10x \le 5\,\,185\)

\(x \le 518,5\)

Mà \(x \in \mathbb{N}*\) nên xe tải đó có thể chở tối đa 518 thùng sữa.

2. Gọi \(x{\rm{\;(kg)}}\) là khối lượng axit \(X\) có trong dung dịch \(A\) và \(y{\rm{\;(kg)}}\) là khối lượng dung dịch chất \(A\) \(\left( {y > x > 0} \right)\).

Khi thêm \[1\] kg nước vào dung dịch \[A\] thì được dung dịch \[B\] có khối lượng là: \(y + 1{\rm{\;(kg)}}\).

Theo bài, nồng độ của dung dịch \(B\) là \[20\% \] nên ta có phương trình:

\(\frac{x}{{y + 1}} \cdot 100\% = 20\% \) hay \(5x = y + 1\) suy ra \(5x - y = 1\) (1)

Khi thêm \[1\] kg axit vào dung dịch \[B\] thì được dung dịch \[C\] có khối lượng là: \(y + 1 + 1 = y + 2{\rm{\;(kg)}}\) và khối lượng axit \(X\) có trong dung dịch lúc này là \(x + 1{\rm{\;(kg)}}\)

Theo bài, nồng độ của dung dịch \(C\) là \[33\frac{1}{3}\% \] nên ta có phương trình:

\(\frac{{x + 1}}{{y + 2}} \cdot 100\% = 33\frac{1}{3}\% \) hay \(3\left( {x + 1} \right) = y + 2\) suy ra \(3x - y = - 1\). (2)

Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}5x - y = 1\\3x - y = - 1\end{array} \right.\)

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).

Thay \(x = 1\) vào phương trình \(5x = y + 1\) ta được:

\(5 \cdot 1 = y + 1\), suy ra \(y = 4\) (thỏa mãn).

Vậy nồng độ axit của dung dịch \(A\) là: \(\frac{x}{y} \cdot 100\% = \frac{1}{4} \cdot 100\% = 25\% .\)