Câu hỏi:

05/07/2025 59 Lưu

(2,5 điểm)

1. Người ta dùng một loại xe tải để chở sữa tươi cho một nhà máy. Biết mỗi thùng sữa loại \(180\,\,{\rm{ml}}\) nặng trung bình \(10\,\,{\rm{kg}}.\) Theo khuyến nghị, trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5,25\) tấn. Hỏi xe có thể chở được tối đa bao nhiêu thùng sữa như vậy, biết bác lái xe nặng \(65\,\,kg?\)

2. Giải bài toán sau bằng cách lập hệ phương trình:

Người ta cho thêm \[1\] kg nước vào dung dịch \[A\] (của axit \(X)\) thì được dung dịch \[B\] có nồng độ axit là \[20\% \]. Sau đó lại cho thêm \[1\] kg axit \(X\) vào dung dịch \[B\] thì được dung dịch \[C\] có nồng độ axit là \[33\frac{1}{3}\% \]. Tính nồng độ axit của dung dịch \[A\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

1. Đổi \(5,25\) tấn \( = 5\,\,250\,\,{\rm{kg}}\)

Gọi \(x\) (thùng) là số sữa mà xe có thể chở \(\left( {x \in \mathbb{N}*} \right)\).

Khi đó, khối lượng sữa mà xe chở là: \(10x\,\,\left( {{\rm{kg}}} \right).\)

Tổng khối lượng sữa và bác tài xế là: \(65 + 10x\,\,\left( {{\rm{kg}}} \right).\)

Do trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5\,\,250\,\,{\rm{kg}}\) nên ta có

\(65 + 10x \le 5\,\,250\)

\(10x \le 5\,\,185\)

\(x \le 518,5\)

Mà \(x \in \mathbb{N}*\) nên xe tải đó có thể chở tối đa 518 thùng sữa.

2. Gọi \(x{\rm{\;(kg)}}\) là khối lượng axit \(X\) có trong dung dịch \(A\) và \(y{\rm{\;(kg)}}\) là khối lượng dung dịch chất \(A\) \(\left( {y > x > 0} \right)\).

Khi thêm \[1\] kg nước vào dung dịch \[A\] thì được dung dịch \[B\] có khối lượng là: \(y + 1{\rm{\;(kg)}}\).

Theo bài, nồng độ của dung dịch \(B\) là \[20\% \] nên ta có phương trình:

\(\frac{x}{{y + 1}} \cdot 100\% = 20\% \) hay \(5x = y + 1\) suy ra \(5x - y = 1\) (1)

Khi thêm \[1\] kg axit vào dung dịch \[B\] thì được dung dịch \[C\] có khối lượng là: \(y + 1 + 1 = y + 2{\rm{\;(kg)}}\) và khối lượng axit \(X\) có trong dung dịch lúc này là \(x + 1{\rm{\;(kg)}}\)

Theo bài, nồng độ của dung dịch \(C\) là \[33\frac{1}{3}\% \] nên ta có phương trình:

\(\frac{{x + 1}}{{y + 2}} \cdot 100\% = 33\frac{1}{3}\% \) hay \(3\left( {x + 1} \right) = y + 2\) suy ra \(3x - y = - 1\). (2)

Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}5x - y = 1\\3x - y = - 1\end{array} \right.\)

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).

Thay \(x = 1\) vào phương trình \(5x = y + 1\) ta được:

\(5 \cdot 1 = y + 1\), suy ra \(y = 4\) (thỏa mãn).

Vậy nồng độ axit của dung dịch \(A\) là: \(\frac{x}{y} \cdot 100\% = \frac{1}{4} \cdot 100\% = 25\% .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1. Xét \(\Delta ABD\) vuông tại \(B\), ta có:

1. Người ta dùng một loại xe tải để chở sữa tươi cho một nhà máy. Biết mỗi thùng sữa loại   180 m l   nặng trung bình   10 k g .   Theo khuyến nghị, trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là   5 , 25   tấn. Hỏi xe có thể chở được tối đa bao nhiêu thùng sữa như vậy, biết bác lái xe nặng   65 k g ?    2. Giải bài toán sau bằng cách lập hệ phương trình:  Người ta cho thêm   1   kg nước vào dung dịch   A   (của axit   X )   thì được dung dịch   B   có nồng độ axit là   20 %  . Sau đó lại cho thêm   1   kg axit   X   vào dung dịch   B   thì được dung dịch   C   có nồng độ axit là   33 1 3 %  . Tính nồng độ axit của dung dịch   A  . (ảnh 2)

⦁ \(\sin C = \frac{{AB}}{{BC}},\) suy ra \(BC = \frac{{AB}}{{\sin C}} = \frac{9}{{\sin 32^\circ }} \approx 16,98.\)

⦁ \(AC = AB \cdot \cot C = 9 \cdot \cot 32^\circ \approx 14,40.\)

Vậy \[AC \approx 14,40\] và \[BC \approx 16,98.\]

2. Xét \(\Delta ACD\) vuông tại \(D\), ta có: \(DC = AD \cdot \tan \widehat {CAD} = AD \cdot \tan 40^\circ \).

Xét \(\Delta ABD\) vuông tại \(D\), ta có: \(DB = AD \cdot \tan \widehat {BAD} = AD \cdot \tan 50^\circ \).

Ta có: \(BC = DB - DC\)

Suy ra \(4 = AD \cdot \tan 50^\circ - AD \cdot \tan 40^\circ \)

\(4 = AD \cdot \left( {\tan 50^\circ - \tan 40^\circ } \right)\)

\(AD = \frac{4}{{\tan 50^\circ - \tan 40^\circ }}\).

Do đó \(DC = AD \cdot \tan 40^\circ = \frac{{4\tan 40^\circ }}{{\tan 50^\circ - \tan 40^\circ }} \approx 9,5{\rm{\;(m)}}{\rm{.}}\)

Như vậy, \(CH = CD + DH \approx 9,5 + 7 = 16,5{\rm{\;(m)}}{\rm{.}}\)

Vậy chiều cao của tòa nhà 2 khoảng \(16,5{\rm{\;m}}.\)