Câu hỏi:

05/07/2025 22

Cho góc nhọn \(\alpha \) thỏa mãn \(0^\circ < \alpha < 70^\circ \) và biểu thức: \[A = \tan \alpha \cdot \tan \left( {\alpha + 10^\circ } \right) \cdot \tan \left( {\alpha + 20^\circ } \right) \cdot \tan \left( {70^\circ - \alpha } \right) \cdot \tan \left( {80^\circ - \alpha } \right) \cdot \tan \left( {90^\circ - \alpha } \right)\].

Tính giá trị của biểu thức \(A\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp số: 1.

Với \(0^\circ < \alpha < 70^\circ \), ta có: \[90^\circ - \left( {70^\circ - \alpha } \right) = \alpha + 20^\circ ;\,\,\,90^\circ - \left( {80^\circ - \alpha } \right) = \alpha + 10^\circ .\]

Do đó:

\[A = \tan \alpha \cdot \tan \left( {\alpha + 10^\circ } \right) \cdot \tan \left( {\alpha + 20^\circ } \right) \cdot \tan \left( {70^\circ - \alpha } \right) \cdot \tan \left( {80^\circ - \alpha } \right) \cdot \tan \left( {90^\circ - \alpha } \right)\]

\[\,\,\,\,\, = \tan \alpha \cdot \tan \left( {\alpha + 10^\circ } \right) \cdot \tan \left( {\alpha + 20^\circ } \right) \cdot \cot \left( {\alpha + 20^\circ } \right) \cdot \cot \left( {\alpha + 10^\circ } \right) \cdot \cot \alpha \]

\[\,\,\,\,\, = \left( {\tan \alpha \cdot \cot \alpha } \right) \cdot \left[ {\tan \left( {\alpha + 10^\circ } \right) \cdot \cot \left( {\alpha + 10^\circ } \right)} \right] \cdot \left[ {\tan \left( {\alpha + 20^\circ } \right) \cdot \cot \left( {\alpha + 20^\circ } \right)} \right]\]

\[\,\,\,\,\, = 1 \cdot 1 \cdot 1 = 1.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1. Đổi \(5,25\) tấn \( = 5\,\,250\,\,{\rm{kg}}\)

Gọi \(x\) (thùng) là số sữa mà xe có thể chở \(\left( {x \in \mathbb{N}*} \right)\).

Khi đó, khối lượng sữa mà xe chở là: \(10x\,\,\left( {{\rm{kg}}} \right).\)

Tổng khối lượng sữa và bác tài xế là: \(65 + 10x\,\,\left( {{\rm{kg}}} \right).\)

Do trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5\,\,250\,\,{\rm{kg}}\) nên ta có

\(65 + 10x \le 5\,\,250\)

\(10x \le 5\,\,185\)

\(x \le 518,5\)

Mà \(x \in \mathbb{N}*\) nên xe tải đó có thể chở tối đa 518 thùng sữa.

2. Gọi \(x{\rm{\;(kg)}}\) là khối lượng axit \(X\) có trong dung dịch \(A\) và \(y{\rm{\;(kg)}}\) là khối lượng dung dịch chất \(A\) \(\left( {y > x > 0} \right)\).

Khi thêm \[1\] kg nước vào dung dịch \[A\] thì được dung dịch \[B\] có khối lượng là: \(y + 1{\rm{\;(kg)}}\).

Theo bài, nồng độ của dung dịch \(B\) là \[20\% \] nên ta có phương trình:

\(\frac{x}{{y + 1}} \cdot 100\% = 20\% \) hay \(5x = y + 1\) suy ra \(5x - y = 1\) (1)

Khi thêm \[1\] kg axit vào dung dịch \[B\] thì được dung dịch \[C\] có khối lượng là: \(y + 1 + 1 = y + 2{\rm{\;(kg)}}\) và khối lượng axit \(X\) có trong dung dịch lúc này là \(x + 1{\rm{\;(kg)}}\)

Theo bài, nồng độ của dung dịch \(C\) là \[33\frac{1}{3}\% \] nên ta có phương trình:

\(\frac{{x + 1}}{{y + 2}} \cdot 100\% = 33\frac{1}{3}\% \) hay \(3\left( {x + 1} \right) = y + 2\) suy ra \(3x - y = - 1\). (2)

Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}5x - y = 1\\3x - y = - 1\end{array} \right.\)

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).

Thay \(x = 1\) vào phương trình \(5x = y + 1\) ta được:

\(5 \cdot 1 = y + 1\), suy ra \(y = 4\) (thỏa mãn).

Vậy nồng độ axit của dung dịch \(A\) là: \(\frac{x}{y} \cdot 100\% = \frac{1}{4} \cdot 100\% = 25\% .\)

Lời giải

Hướng dẫn giải

a) \(\frac{{2x + 1}}{{x + 1}} + \frac{2}{x} = \frac{2}{{x\left( {x + 1} \right)}}\)

Điều kiện xác định \(x \ne - 1,\,\,x \ne 0\).

\(\frac{{2x + 1}}{{x + 1}} + \frac{2}{x} = \frac{2}{{x\left( {x + 1} \right)}}\)

\(\frac{{\left( {2x + 1} \right)x}}{{x\left( {x + 1} \right)}} + \frac{{2\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}} = \frac{2}{{x\left( {x + 1} \right)}}\)

\(\left( {2x + 1} \right)x + 2\left( {x + 1} \right) = 2\)

\(2{x^2} + x + 2x + 2 = 2\)

\(2{x^2} + 3x = 0\)

\(x\left( {2x + 3} \right) = 0\)

\(x = 0\) hoặc \(2x + 3 = 0\)

\(x = 0\) hoặc \(x = - \frac{3}{2}\).

Đối chiếu với ĐKXĐ suy ra nghiệm của phương trình đã cho là \(x = - \frac{3}{2}.\)

b) \(\frac{{x - 1}}{2} - \frac{{7x + 3}}{{15}} \le \frac{{2x + 1}}{3} + \frac{{3 - 2x}}{5}\)

\(\frac{{15\left( {x - 1} \right)}}{{30}} - \frac{{2\left( {7x + 3} \right)}}{{30}} \le \frac{{10\left( {2x + 1} \right)}}{{30}} + \frac{{6\left( {3 - 2x} \right)}}{{30}}\)

\[15\left( {x - 1} \right) - 2\left( {7x + 3} \right) \le 10\left( {2x + 1} \right) + 6\left( {3 - 2x} \right)\]

\[15x - 15 - 14x - 6 \le 20x + 10 + 18 - 12x\]

\[x - 21 \le 8x + 28\]

\[ - 7x \le 49\]

\[x \ge - 7.\]

Vậy nghiệm của bất phương trình đã cho là \[x \ge - 7.\]

\ (\ frac {{\ left ({2x + 1} \ right) x}} {{x \ left ({x + 1} \ right) \ frac {2} {{x \ left ({x + 1} \ right)}} \)
 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP